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In this paper we develop the algorithmic tools needed for inverse
modeling of aerosol dynamics. Continuous and discrete adjoints of
the aerosol dynamic equation are derived, as well as sensitivity co-
efficients with respect to the coagulation kernel, the growth rate,
and the emission and deposition coefficients. Numerical tests per-
formed in the twin experiment framework for a single component
model problem show that the initial distributions and the dynamic
parameters can be recovered from time series of observations of
particle size distributions.

INTRODUCTION

As our fundamental understanding of atmospheric particles
and their transformations advances, novel computational tools
are needed to integrate observational data and models together
to provide the best, physically consistent estimate of the evolv-
ing state of the atmosphere. Such an analysis state better defines
the spatial and temporal fields of key gas and particle phase
chemical components in relation to their sources and sinks. This
information is critical in designing cost-effective emission con-
trol strategies for improved air quality, for the interpretation of
observational data such as those obtained during intensive field
campaigns, and to the execution of air-quality forecasting. The
development of the tools to integrate measurements and mod-
els is also critical to the challenge of a full utilization of the
vast amounts of satellite data in the troposphere that are now
becoming available, and which will become more prevalent in
the coming years.
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Assimilation of chemical information is only now beginning
in air quality/chemistry arenas (Elbern et al. 1997; Sandu et al.
2003; Daescu et al. 2003; Sandu et al. 2004; Sandu et al. 2005),
but offers the same motivations as those realized in the field of
meteorology. Assimilation techniques can be utilized to produce
three-dimensional, time varying optimal representations of the
particle distributions in the atmosphere, that are consistent with
the observed physical and chemical states.

Forward modeling of aerosols predicts the evolution of
particle size distributions given the known parameters of the
evolution (coagulation kernel, growth rate, emission rates, and
deposition velocities) as well as the initial size distribution. Nu-
merous numerical methods have been proposed in the litera-
ture for solving particle dynamics, and several are surveyed in
Zhang et al. (1999). Methods for solving coagulation include the
semi-implicit scheme (Jacobson 1999), Newton-Cotes quadra-
ture (Sandu 2002), Galerkin (Pilinis 1990; Sandu and Borden
2003), and spline orthogonal collocation (Gelbard and Seinfeld
1978). Methods for solving the growth equation include the mov-
ing sectional approach (Kim and Seinfeld 1990; Lurmann et al.
1997, Jacobson 1997), finite volumes (Bott 1989), finite ele-
ments (Tsang and Hippe 1988; Meng et al. 1998), quintic splines
(Nguyen and Dabdub 2001), semi-Lagrangian methods (Nguyen
and Dabdub 2002), and other (Binkowski and Shankar 1995).

The inverse modeling problem consists of recovering the ini-
tial or emitted size distribution and the parameters of evolution
given information about the time evolution of the system, for
example periodic measurements of the number, surface, mass,
or volume density. We take the variational approach, in which
the inverse modeling problem is formulated as an optimization
problem. In this paper the concept of “inverse modeling” is dif-
ferent than inverse in time simulation.

In this paper we develop the algorithmic tools needed for in-
verse modeling of particle dynamics. Continuous and discrete
adjoints of the particle dynamic equation are derived, as well as
sensitivity coefficients with respect to the coagulation kernel, the
growth rate, and emission and deposition coefficients. For the
derivations we consider spatially independent (box) models and
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focus only on the physical particle dynamics aspects, that is, we
do not treat chemical and thermodynamic transformations. We
discussed inverse modeling of chemical kinetics in (Sandu et al.
2003), and data assimilation in 3D chemical-transport models
(Sandu et al. 2004; Sandu et al. 2005). We have previously an-
alyzed the adjoint equations for aerosols undergoing ideal ther-
modynamically driven condensational growth in (Henze et al.
2004), and more research is in progress to extend this work to
nonideal systems. The methods developed here are a first step
toward the goal of performing data assimilation for comprehen-
sive three-dimensional particle chemistry and transport models.

The paper is organized as follows. An overview of the parti-
cle dynamics equations and of the forward modeling problem is
given in Section The inverse modeling problem is formulated
in Section Continuous adjoints are discussed in Section and
discrete adjoints in Section A comprehensive set of numeri-
cal results on the coagulation and growth equation is presented
in Section Section 6, and conclusions are drawn in Section
Complete derivations of several continuous and discrete adjoint
equations are given in Appendices A. through D.

AEROSOL DYNAMICS

To accurately study the effects of aerosols it is necessary
to resolve aerosol number and mass distributions as a function
of chemical composition and size. Three major approaches are
used to represent the size distribution of aerosols: continuous,
discrete and parameterized. In this paper we focus on continu-
ous models (i.e., continuous size distributions and the general
dynamic equations in continuous form) with particle size distri-
butions being functions of particle mass (m) and time (¢). The
formulation follows mainly (Seinfeld and Pandis 1997). We also
consider numerical discretizations of continuous models using
the piecewise polynomial approach proposed by Sandu (Sandu
2004). The discussion in this paper focuses on physical trans-
formations (growth, coagulation, sources, and sinks) and does
not cover chemical transformations.

Number Density Formulation

We first consider the particle dynamic equation in number
density formulation, with particle mass the independent variable.
The size distribution function (number density) of a family of
particles will be denoted by n(m, t); the number of particles
per unit volume of air with the mass between m and m + dm
is n(m, t) dm. This describes completely a population of single-
component particles. The aerosol population undergoes physical
and chemical transformations (Seinfeld and Pandis 1997) which
change the number density in time:

an(m,t) .

0
a7 —%[I(m, Hn(m, t)]

1 m
+ 3 / Bm —m',mn(m’, yn(m —m’, t)dm’
0
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—n(m,t) /00 Bm, mHnm’, t)ydm' + S(m, t)
0
— L(m, t)n(m, t). [1]

with the initial and boundary conditions
n(m, t =% = n(m), n(m = 0,1) = 0.

Inthisequation I (m, t) = dm /dt is the rate of particle growth
(e.g., due to condensation, evaporation, deposition and sublima-
tion), B(m, m’) is the coagulation kernel, S(m, t) is any source of
particles of mass m (e.g., nucleation and emissions) and L(m, t)
is the first-order rate of removal of particles of mass m (e.g., by
deposition).

Mass Density Formulation

We consider now particles composed of multiple chemical
constituents i = 1,2, ..., r. The total mass of a particle is the
sum of masses of its r individual components

r
nm = E m;.
i=1

To describe the multicomponent population of particles one
models the mass concentration distribution of each species i

qi(m, t) = min(m, H)[pugipg 'cm™],

with the total particle mass concentration distribution being
p
qm, 1) =mn(m, 1) =" qi(m.1).
i=1

The total mass density of component i in particles with masses
between m and m + dm is q;(m, t) dm.

The growth (condensation/evaporation) rate of species i is
I; = dm; /dt. It is customary to use the normalized growth rates

1 dm,- 1
H;(m,t) = o dr = Eli(m’ t).

The total growth rate of particles of mass m is

Ldm
Him. 1) = —=% = 3" Hi(m. 1),
i=1

The particle dynamic equation governs the evolution of
the mass concentration distribution of each component i =
1,2, ..., r (Seinfeld and Pandis 1997).

dqi(m, t) 0
———— = Hi(m, t)qg(m,t) — —[mq; H]
Jat om
— ,,l‘
qglm —m )dm,

!

+ / ﬂ(m/’m _m/)qi(m/vt)
0

m—m
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_qi(mst)/ ﬂ(msml)%dm/‘i_mis(mvt)
0

_L(mat)ql(mﬂt)v [2]
where m;S(m, t) is the source term and and L(m, t)q;(m, t) is
the removal term (ugipug 'em™3s71).
The initial and boundary conditions are
gi(m.t =1°) = q(m).  q;(m =0,1) =0,
gi(m = 00, 1) = 0.

The boundary condition at m = oo expresses the fact that
there cannot be arbitrarily large particles (e.g., due to removal
processes).

Discrete Formulation

In this section we exemplify the derivation of discrete par-
ticle dynamics models based on the number formulation of the
dynamic equation (1) discretized in size with a piecewise poly-
nomial approach as described by Sandu (2004). A completely
similar approach for the mass density formulation is possible.

The finite dimensional approximation of the number distri-
bution n(m, t) is taken in the space spanned by the set {¢;},;;
of piecewise polynomial basis functions. The dynamic equation
discretized in size reads

n'(t) = Gtn(t) + F(n(t)) + A7 [B x n(t)]n(t)

+S(@t) — L(H)n(t) (3]

with the initial condition by projecting the continuous initial
condition of (1) onto the finite dimensional space:
n(to) =n".

The growth terms are discretized using a Discontinuous
Galerkin approach where F(n(t)) is the Godunov flux differ-
ence and

Gy i) = /0 1m, 0 (m), (m) dm

The coagulation terms are discretized using a collocation ap-
proach with collocation points {c;}<;<;. We have

Aij =)
. 1 Cj
Bix =7 | Bmc;—mai(c)gulc; —m)dm

- / B(m, c; — m)p;(m)pi(c; —m)dm,
0

and

{[B x n(0)] - n(t)}i = n" (1)B'n(1).
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A fully discrete particle dynamic equation is obtained by ap-
plying a time stepping algorithm to (3). For example the Forward
Euler time discretization leads to

W=k AHG )t + F(n*) + A7Y[B x n*In*
+ 8@y — L(t"n*}. [4]

where the numerical solution is n¥ &~ n(¢%).

The Forward Modeling Problem

In forward modeling one starts with a known initial distri-
bution, n°(m) or q,-o(m), given boundary conditions and model
parameters, I (m, t) or H;(m, t), B(m, m’), S(m, t), and L(m, t).
The evolution of the solution in time is completely described by
the particle dynamic equation (1) or (2). In practice a numerical
approximation, or discrete model of the form (4), is implemented
and approximations of the distribution are computed at discrete
time moments.

THE INVERSE MODELING PROBLEM

Variational methods provide an optimal control approach
to the data assimilation problem. Four-dimensional variational
(4D-Var) data assimilation allows the optimal combination of
three sources of information: an a priori (“background”) esti-
mate of the state of the atmosphere; knowledge about the physi-
cal and chemical processes that govern the evolution of pollutant
fields, as captured in the model; and observations of some of the
state variables. The optimal analysis state is obtained through a
minimization process to provide the best fit to the background
estimate and to all observational data available in the assimila-
tion window.

To be specific, consider the model (1) which describes the
evolution of the number density of a particle population given
the initial distribution 7n°(m) and the parameters p of the prob-
lem (I(m, t) or H;(m, t), B(m,m"), S(m, t), and L(m, t)). This
equation is called the forward model and describes the (forward
in time) evolution of particle density. The general inverse mod-
eling problem consists of finding the initial distribution and the
parameter values which minimize an integral cost functional

T 00
J@n°, p)= f / Jo(n(m, t))dm dt. [5]
10 0

The functional depends on the initial distribution and the
parameter values implicitly, through the mapping of (n°, p) to
n(m, t) provided by the forward model. The minimization proce-
dure needs the functional value 7 and its gradients with respect
to the model parameters V,07 and V,J. For given values of
(n°, p) the functional value is obtained by a forward integration
of the forward model, while the derivatives can be efficiently
obtained through adjoint modeling, as will be explained in the
following section.
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Data Assimilation

Of particular interest in this paper is the data assimilation
problem, where the observations y'...y" are available at the
discrete times ¢! ... ¢V . The observed quantities are functions of
the solution

y(1) = h(n(m, 1)).

Observations can be particle number or mass densities, opti-
cal properties, and so on. Data assimilation uses the information
from observations to estimate the values of a finite set of pa-
rameters p (which can provide a parameterization of the initial
solution n°, or determine the forward model parameters [ or
H, B, S, and L). The cost functional is defined to measure the
mismatch between model predictions and observations

1
Jn°, p)= (= pe) B (p — pp)

+

| =

N
DO =R RN = h(n)). 6]
k=1

The first term penalizes the departure of the parameters from
the apriori estimate pg, and is called the background term. The
matrix B is the error covariance associated with background
terms and R;, are error covariances associated with observations.
The parameters p, which initially have values pg, are adjusted
such that the value of the functional is minimized.

CONTINUOUS ADJOINTS OF THE DYNAMIC
EQUATION

In this section we define the adjoint equations for the model
(1) that offer a computationally efficient approach to computing
the gradients of the cost functional (5) with respect to the model
parameters and initial conditions. Note that the functional de-
pends on #° and p implicitly, since the forward model evolution
uniquely determines {n*};~; from 1n° and p. In the continuous
formulation one derives the adjoint of the original (continuous in
time and size) dynamic equation, to obtain the derivative of the
exact solution. For a computer implementation both the forward
and the adjoint model are solved using the numerical methods
of choice.

Number Density Formulation

The adjoint equation of the tangent linear model of equation
(1) for the cost functional (5) defines the evolution of adjoint
variables

IMm, 1) 3(m, 1)
ar am

— / A, HBm, m' —mn(m’ —m, t)dm’

1(m, 1)

+)L(m,t)/ B(m, mn(m’, t)dm’
0
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+ /000 Am', Onm’, H)Bm', m)dm’
+A(m, t)L(m,t) — %(m, t)
= M*A(m, t) — %(m, N, t"<t<T, (71
with the following boundary and initial conditions

AMm,t =T)=0, Am=0,t)=0, A(m=o00,1)=0.
A complete derivation of the adjoint equations and the sensitivity
relations is given in Appendix A.

The adjoint variables are initialized at the final time T.
Equation (7) is defined such that, when integrated backwards
in time from T to 9, the value of the adjoint variable at % is
the sensitivity of the cost functional with respect to initial val-
ues A(m, t%) = V,07. Thus the adjoint Equation (7) provides
a method to obtain the gradients needed in the minimization of
5).

The Equation (7) depends on the state of the forward model
n(m, t). Consequently, one needs first to integrate the forward
model (1) and save the state at all times, then use this information
during the backward integration of (7).

The sensitivities of the cost functional (5) with respect to
forward model parameters are (see Appendix A):

VT = Am, %) [8a]
T 1
Vﬂ(m,m’)\.7 = f (—)\,(I’I’l, t) + Ek(m + m/a l))
x n(m, Hn(m’, t)dt [8b]
Viownd = 20D 1 [8c]
om
VS(m,l)\j = A(m, l) [Sd]
VimnT = —A(m, t)n(m, t) [8e]

All the sensitivity coefficients (8a)—(8e) of the cost functional
can be obtained by one forward in time integration of the forward
model (1), followed by a single backwards in time integration of
the adjoint model (7). When solving the data assimilation prob-
lem each iteration for the minimization of the cost functional (5)
requires one evaluation of the cost functional and one evaluation
of its gradient, therefore we have one forward and one backward
integration per optimization step.

Data Assimilation

For data assimilation the functional (6) is defined at dis-
crete time moments and uses a discrete set of observations.
Formally, the function Jy in (6) and the corresponding forc-
ing term in (7) contain delta functions at measurement times
t*. For an equivalent formulation consider #* and ¢% to be the
moments immediately before and immediately after t*. The
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adjoint model (7) is defined on each subinterval [t¥~!, ¢*] for

k=N,N—1...1as
dA(m,t
(antl’ ) _ M*am, 1), <t <,
k k oh k ! -1,k k
)"(mv t_) = )"(mv t+) - %(mv t ) Rk (y - h(n(mv t )))a
Am,tY) =0, Am,t°) = rm, 1)
ap r
+ (—(m, tO)) B~'(p — pp).
on
AMm=0,t)=0, Im=o00,1t)=0. [9]

Note that instead of delta forcing terms in this formulation
we have explicit jumps of the adjoint variable between intervals
(across the observation times). The derivative of p with respect
to n may be nonzero for parameters used to define the initial
distribution.

Mass Density Formulation
For multiple components the cost functional is defined as

T 0
.7=/ / Jo(qi1(m, 1), g2(m, 1), ..., go(m, 1)) dmdt. [10]
0 JOo

A complete derivation of the adjoint equation and sensitivity
coefficients for the multicomponent, mass density formulation
(2) is given in Appendix B. The adjoint equation is:

oAi(m, 1)
ot

—ZA (m, OH (m, 1) — mH (m, 12201 (m D

i=
—/ P 1) om0 1)

0 m
—Ai(m, )]g(m', t)ydm’

> Bm',m) ¢ ,
— | BN ot

/0 - JZZ;[ jm +m’, 1)
—Ajm', 0Olg;m’, t)dm’

+ Ai(m, t)L(m, t

with the initial and boundary conditions:

Am,t=T)=0, A(m=0,1)=0

For data assimilation the adjoint equation can be redefined
similar to (9). The sensitivity equations are:

V0T = hi(m, o) [11a]
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Vﬁ(m’mf)j = Z[ |:)\ (m +m f)ql(m [) (m 1)
N q(m’, )]
—Xi(m, H)qi(m, t) pr dt [11b]
Vimand = Ai(m, t)g(m, t)
+ qu,(m t)ax (m ) [1c]
VsmaJ = Zmixi(m, ) [11d]
i=1
Vimnd ==Y Ailm, 1)g;(m. 1) [11e]
i=1

The minimization procedure employed for data assimilation
requires at each step one evaluation of the cost functional (10)
and one evaluation of its gradient (11a)—(11e). Therefore each
optimization step is completed using one forward in time inte-
gration of the forward model (2), followed by a single backwards
in time integration of the adjoint model (11).

DISCRETE ADJOINTS OF THE DYNAMICS EQUATION

In the discrete approach the numerical discretization (4) of
the the particle dynamic equation is considered to be the for-
ward model. This is a pragmatic view, as only the numerical
model is in fact available for analysis. The adjoint of the discrete
model (4) is formulated and solved. The approach amounts to
computing the derivatives of the numerical solution, rather than
approximating the derivatives of the exact solution. In this sec-
tion we exemplify the derivation of discrete adjoint techniques
based on the number formulation of the dynamic equation dis-
cretized with a piecewise polynomial approch (Sandu 2004) and
the Forward Euler method (4).

Direct Approach

Taking the adjoint of the discrete equation (4) leads to a
method to propagate the adjoint variables backwards in time.
The general derivation of the discrete adjoints, including the
case of a higher-order explicit Runge Kutta time stepping, is
presented in Appendix C. The cost functional is defined in terms
of the discrete model state at times ¢/, usually multiples of the
integration time step

[12]

N
=Y Jjnh).
j=1
The adjoint equation of (4) reads
M= AGT () + FT (Y + (B + BT) x n*]1A7T

C1 dJEmH\T
=L@ -2 <—§nk ) 5",
k=N,N—1...0

N =o.

[13]
[14]
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The factor 83 is one if X is a time point used in the definition
of J, and zero otherwise. The adjoint variable at t° gives the
gradient of the cost functional (12) with respect to the initial
distribution,

A0 = Vod.

Note that this is the derivative of the numerical solution as
used in the definition of (12), as opposed to the continuous ad-
joint formulation (8a), where A° defines the derivative of the
continuous solution.

In practice the continuous forward model (1) is solved numer-
ically, and so is the continuous adjoint Equation (7). Therefore
the continuous adjoint approach is in practice a hybrid approach.
The operations of numerical discretization and adjoint do not
commute in general, and consequently the numerical solution
of (7) is different from the discrete adjoint (13). For data as-
similation problems one needs the derivative of the numerical
solution, that is, the discrete adjoints are in principle preferred.
For sensitivity studies using the adjoint method one wants to
approximate the sensitivities of the continuous model, and the
continuous adjoint seems more appropriate.

Automatic Differentiation

Given a program that implements the forward model, auto-
matic differentiation builds a new, augmented program, which
computes the analytical derivatives along with the original pro-
gram (Corliss et al. 2001; Griewank 2000). The derivatives
are propagated using the chain rule and are accurate up to ma-
chine precision. Automatic differentiation can work in forward
mode, in which case the tangent linear model is produced, and
in reverse mode, in which case the discrete adjoint is produced.
Several automatic differentiation tools are available including
TAMC (Giering 1997; Giering and Kaminski 1998; Giering),
Tapenade (Courty 2003), Adifor, ADOL-C, NAGWare Fortran
95, and so on.

Automatic differentiation has several highly attractive fea-
tures. First, it requires only (an implementation of) the original

06 -
— Bin4 +
—~ 05} ——-Bin8 A
2 ;0\

04} o\

0

0.3t / \
0.2 \

0.1+t !

dlog V. (t7) 79 log V(

0F— - =

-0.1t . . . . . .
1 2 3 4 5 6 7 8
Bin Number

FIG. 1.
slopes (right) for coagulation and growth.
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forward model. The transformations needed to obtain the adjoint
gradients are done completely automatically. This allows, in
principle, to perform inverse modeling with any forward model,
no matter how complicated. Moreover, parts of the model may be
legacy code for which we do not have all the underlying details,
and an analytical (continuous) adjoint of this submodels may be
impossible to derive. Next, automatic differentiation produces
discrete adjoints, therefore derivatives of the numerical solution,
which are appropriate for optimization purposes.

In this paper we use the automatic differentiation tool TAMC
(Giering 1997; Giering and Kaminski 1998) to generate the dis-
crete adjoint derivatives.

The Role of Forward Numerical Method

Clearly, the formulation of the discrete adjoint equation de-
pends not only on the particle dynamic equation itself, but also
on the numerical method used to solve it (to define the discrete
forward model). To illustrate the dependence of the discrete ad-
joint equation on the numerical method used to solve the forward
problem we derive in Appendix D the discrete adjoint of the
popular semi-implicit method (Jacobson 1999) for solving co-
agulation. One can compare the coagulation terms in (13) with
the discrete coagulation adjoint (D.5). The adjoint derivation
(D.5) is useful in its own right for performing data assimilation
when coagulation is solved with the semi-implicit method.

NUMERICAL RESULTS

The Test Problem

For the numerical experiments we consider the test problem
of aerosol coagulation and growth from (Gelbard and Seinfeld
1978), which admits an analytical solution. Let N; be the to-
tal initial number of particles and V), the mean initial volume.
The initial number distribution is exponential, the coagulation
rate is constant, and the growth rate is linear with the particle
volume:

w=gron(-7)
n(v):v—exp ——, Bl,w)=pFy, I[()=o,v.

m Vn‘l

01" — Bin4 .
< — - Bin8 I\
5% I
2 ! \
o / \
~ ——— S ~
— 0
= \ !
o \ /
g’ \ /
o \

\
-0.1 v
1 2 3 4 5 6 7 8

Bin Number

The logarithmic sensitivities of the mean volume densities in bins 4 and 8 at final time with respect to the initial distribution bin averages (left) and bin
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TABLE 1
The logarithmic sensitivities of the mean volume densities in
bins 4 and 8 with respect to the values of o and B for
coagulation and growth

dlogV/dlogo dlogV/dlogp
Bin 4 —0.288 —0.178
Bin 8 —0.303 —0.406

The analytical solution in (Gelbard and Seinfeld 1978) is
4 N, -2 ol
nA(v’ t) f— —t - ex <&(O’) p— O—()l).
Vm(Nt,B()t + 2)2 Vm(Nt,Bot + 2)

We solve the dynamic equation for 8, = 2.166 x
107%°cm?h! particles’1 ,o, = 0.02 hour™", N, = 10* particles,
Vin = 0.03 m?. The value of B, follows from (Jacobson 1999),
and the value of o, is chosen such that coagulation and growth
have effects of comparable magnitude. The size range is trun-
cated to the volume interval Vi, = 1073 um?, Ve = 1 um?.
A piecewise linear discretization with 8 bins is employed for
particle size as described in Section 5. Bin centers are log-
uniformly distributed in the range [Viin, Vimax]- The time in-
terval under consideration is [tfp = 0,7 = 48] h. The time
discretization is performed with the second order Runge Kutta
scheme (C.1) with the time step At = 6 min. The actual im-
plementation is done in the (equivalent) volume concentration
density formulation, which is also used for the presentation of
results.

The experiments are carried out in the twin experiment frame-
work. A reference run with the reference values for initial con-
ditions, coagulation kernel, and growth rate is used to gener-
ate pseudo-observations {y; ...y} of the number density, or a
function of the number density

Ye=hitnh), 1<j<M.

Normalized Value

— RMS
— — Cost Fun

-30

10
1 10 20 30 40 50

No. of Iterations
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Each pseudo-observation is a vector of M components. For
example, the number concentration is represented by a linear
polynomial inside each bin. If we observe the number concen-
trations, the vector of observations will contain two values per
observed bin (for the mean concentration and the slope inside
the bin, or, equivalently, for two distinct concentrations inside
the bin). The pseudo-observations are recorded at the end of
each hour (i.e., after each 10 integration time steps) for the 48-h
interval.

The model is re-run with perturbed values of the initial con-
ditions, coagulation kernel, and growth rate, and the differences
between model results and observations is used to define the cost
functional

M
T 0, )= > (v —h;t nb)?

k=1 j=1

[15]

Note that this cost functional contains no background terms,
which is justified by our apriori knowledge of the fact that
the initial guesses are wrong, while the observations are
correct.

The reference values of #n°, o, and B are recovered by solving
the minimization problem

min J(1°, o, B)
n%0,B

In our experiments the number of independent observations
is larger than the number of parameters to recover, and is likely
that the minimization problem has a unique solution even in
the absence of background terms. The gradient of the func-
tion (15) is obtained through adjoint modeling. The major-
ity of the numerical experiments presented here are carried
out using the discrete adjoints generated with TAMC. In Sec-
tion 6.7 we compare the results obtained using continuous and
discrete adjoints, and in Section 6.8 the results obtained with
the discrete adjoints obtained analytically and via automatic
differentiation.

— Reference
— — Perturbed
4000 O Optimized
%' Analytic
$ 3000
o
(0]
§ 2000
(@]
>
1000
03 -2 I 0
10 10 10 10

Particle Volume [pm3 ]

FIG. 2. Results for recovering the initial distribution for coagulation and growth from a complete set of observations.
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The optimization algorithm used is LBFGS (Nocedal 1980;
Byrd et al. 1995). For the recovery of o and B parameters
we prescribe lower and upper bounds for the optimization as
follows:
Olower = 007 Oupper = 057 ﬁlower = OO, ,Bupper = 1074~

These bounds are more than one order of magnitude larger
than the reference values of the parameters (mimicking the real
situation where the uncertainty in parameter values is large).
Without using bounds to constrain the optimization process the
combined initial distribution and parameters recovery is not con-
vergent. This is due to the difficulty of the test where not only
the state, but the also model are uncertain. Moreover, the uncer-
tainty allowed in the model parameters is extremely large (as
explained below, we start the optimization process with 5 times
the reference coagulation kernel and 25 times the growth rate).
The bounds should be set to describe the physically meaningful
region in the parameter space. The use of bounds prevents the
optimization process to search for false, unphysical solutions

(e.g., B <0).
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Results for recovering 8 and o for coagulation and growth from a complete set of observations.

As a measure of accuracy in the optimization process we
consider the RMS difference between the reference and the op-
timized solutions:

RMS =

ndof { n%lj1-n%ulj1\2 Orei—opt \ > Brer—Bopt \ >
8” Zj:l ( ”?ef[j] + 50 Otef + 6,3 Bret

8, - ndof + 8, + &g

Here ndof is the number of degrees of freedom used in the
discrete representation of the distribution, and §, (85, 8g) equals
one if we recover n° (o, B), and is zero otherwise.

In the following experiments the initial guesses are obtained
by providing a significant perturbation of the reference values.
The perturbed values of model parameters are 8, = 58, =
1.08 x 1075 cm® h~'particles™! and 0, = 250, = 0.5 h~".

Sensitivity Analysis
Adjoint calculations are a useful tool for sensitivity analysis.
A widely used measure of the relative change in the functional
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FIG. 4. Results for recovering the initial distribution, 8, and ¢ for coagulation and growth from a complete set of observations.
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due to relative changes in the input parameters is given by the
logarithmic sensitivity coefficients

dlog J(tF)  aJF) V()
s = = . .
Alog V(% — av(®) J(F)

Figure 1 shows the logarithmic sensitivity coefficients of the
mean volume densities in bins 4 and 8 at the end of the 48-h
simulation interval with respect to the initial mean volume den-
sities (left) and slopes (right). For both cases relative changes in
the bin slopes have a considerably smaller influence on the final
result than relative changes in the mean densities. The initial
density of particles in bin 5 have the largest impact on the final
density of large particles (bin 8). This means that after 48 h of
evolution most of the large particles were formed through the
growth and coagulation of particles that initially were in size bin
5. Conversely, the growth of particles from bin 5 to larger sizes
has relatively small impact on the number density of particles in
bin 4, hence, the sensitivities in bin 4 are small in comparison.

The logarithmic sensitivities with respect to the values of
the growth parameter ¢ and the coagulation parameter 8 are
given in Table 1. The influences of relative perturbations in these

10 T
— RMS
— — Cost Fun
N\
S . 0 ~ o
] 10 °r \
3 o=
N S~
a ~
AN
% 10 ~.
b
107

0 50 100
No. of Iterations

150

685

—— Reference
4000+ — — Perturbed
O Optimized
> -— Analytic
» 3000+
c
[}
(=}
2 2000+
>
°
> L
1000
0

Particle Volume [umB]

Results for recovering the initial distribution without observations at bins 1, 2, and 3 for both coagulation and growth.

parameters are of the same magnitude for both bins. Note that
all sensitivity coefficients for each bin were obtained via a single
adjoint integration.

Data Assimilation with Complete Observations

We first consider a complete set of hourly observations, that
is, all parameters of the solution (mean concentrations and slopes
in each bin) are observed once every simulation hour. The test
problem consists of the evolution under both coagulation and
growth. Coagulation-only and growth-only test results are sim-
ilar and are discussed briefly at the end of this section.

In Figure 2 the results for recovering the initial distribution
are shown (the parameters B, o assume reference values). The
left plot shows the relative decrease of the cost function and
RMS error with the number of iterations; the values of RMS
and cost function are scaled by their initial value. We let the op-
timization routine run to convergence, and for the solution the
RMS is decreased more than 10'” times from its starting value,
and the cost function more than 10 times. The right plot shows
the exact, reference, perturbed, and optimized distributions at
the initial time. The optimized distribution is visually identical
to the reference one. We also show the analytical distribution
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FIG. 6. Results for recovering the initial distribution with observations at only even bins for both coagulation and growth.
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(round peak) which is well approximated by the numerical
solution.

In Figure 3 the results for recovering § and ¢ are shown (the
reference initial distribution is used in this experiment). The left
plot shows the decrease of the cost function and RMS error with
the number of iterations. The right plot shows the reference and
optimized B, 0. As expected, the recovery of these 2 parameters
require fewer iterations than the recovery of initial conditions
(16 parameters).

In Figure 4 the results for recovering simultaneously the ini-
tial distribution, 8, and o are shown. This experiment is more
challenging for the inversion procedure since perturbations now
affect not only the initial distribution, but the dynamic equation
itself (through B and o). The change of these parameters af-
fects the evolution of the model throughout the simulation time
interval. The left Figure 4 plot shows the decrease of the cost
function and RMS error with the number of iterations. Note the
modest decrease of RMS and cost function, and the large num-
ber of iterations. The central plot shows the exact, reference,
perturbed, and optimized distributions at the initial time. The
optimized distribution is visually identical to the reference one.
The right plot shows the reference and optimized § and o, which
are recovered accurately.
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Results for recovering 8 and o with observations at bin 1 for both coagulation and growth.

We have also performed separate experiments for growth only
(recovering n%, o, and both) and coagulation only (recovering n,
o, and both) problems. The results are qualitatively similar to the
ones presented in this section, and are not shown. The recovery
of the parameters o and S respectively is achieved in fewer
than 10 iterations (RMS decreased more than 10'© times). The
recovery of initial conditions is carried out in 15 iterations for
coagulation, and 50 iterations for growth (RMS decreased more
than 10'* times). For recovering both the initial distribution and
the parameter (o and S respectively) the optimization converges
slower as expected.

Observations in Only Part of the Bins

In this section we present the performance of the data assim-
ilation procedure when hourly measurements of number den-
sity are restricted to only a selected number of bins. We again
consider the complete test problem with both coagulation and
growth.

In Figure 5 the results for recovering the initial distribution
without observations at bins 1, 2, and 3 are shown. The left plot
shows the decrease of the cost function and RMS error with
the number of iterations. Note the very large number of itera-
tions needed, and the fact that, while the cost function decreases
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Results for recovering the initial distribution from a complete set of observations with different frequencies. RMS error on the left, and cost function
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FIG. 9. Recovering 8 and o from observations of total surface density.

considerably, the RMS remains bounded below to about 10~
The right plot gives insight into this behavior. The initial dis-
tribution is recovered well overall, but the optimized values in
bins 1 and 2 are inaccurate. For example, at bin 1 the bin aver-
age is correct but the slope is not. This is somewhat expected
as the information in bins 1, 2, and 3 is not explicitly available
to the optimization process. Additional experiments (not shown
here) were carried out. The initial profile is recovered correctly
with missing observations in bins 4 and 5 but shows consistent
inaccuracies when observations in a large number of bins are
missing. The conclusion is that it is possible to recover to a
good extent the distribution of finer particles from the evolution
equations, provided that enough observations of coarse particle
are available.

Figure 6 presents the results for recovering the initial dis-
tribution with observations at only even bins. The information
provided by even bins is sufficient for an accurate recovery of the
initial conditions. The complementary experiment (not shown
here) of providing observations in only the odd-numbered bins
leads to a good recovered initial profile, with some inaccuracies
in the last bin (number 8).

The recovery of both parameters § and o with observations
at only bin 1 was tested, and the results are shown in Figure 7.
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The right panel shows the reference and optimized 8 and o;
note that, although the initial perturbations are very large, the
reference values are recovered accurately with only several it-
erations. Additional experiments showed that the optimization
process does not converge when observations are provided only
in the large size bins (5-8), therefore the information in the lower
size bins seems more important for the recovery of evolution
parameters.

The Impact of Observation Frequency

To assess the importance of observation frequency we repeat
the experiments with observations in all bins available every
0.1h, 1 h, 6 h, and 12 h. Figure 8 shows the RMS (left) and cost
function (right) decrease with the number of iterations for these
cases. Increasing the observation frequency below 1 hour does
not seem to benefit the assimilation. Less frequent observations
each 6 and 12 hours respectively impact the assimilation per-
formance, but in both cases the optimization process converges.
Note that for complex problems which include fast processes
(chemistry and thermodynamics) a high observation frequency
(below 1 hour) is expected to have a positive impact.

The results in Figure 8 should be compared with the results
in Figures 5 and 6. The assimilation with relatively frequent, but

—— Reference
4000 — - Perturbed |
O Optimized
2 3000 o\ - — - Analytic
5
o
£ 2000
=)
o
>
1000 V-
XP

107 10" 10
Particle Volume [pm3 ]

FIG. 10. Recovering the initial distribution from observations of total surface density.
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incomplete observation is more difficult than the assimilation
with infrequent but complete observations for the model problem
under consideration.

Observations of Total Surface Density

Several tests were performed to recover the model parameters
from hourly observations of total particle number, volume, and
surface area per air volume, and for coagulation, growth, and
coupled models. The results are qualitatively similar, therefore it
is sufficient to only present the total surface density observations
case for coupled coagulation and growth.

Figure 9 shows the results for recovering 8 and o (with the
evolution of the optimized values on the right). The parame-
ters are recovered accurately after a relatively small number of
iterations.

The recovery of initial distributions is shown in Figure 10.
While the cost function decreases as expected, the RMS stays
flat for very large iteration numbers. The initial distribution in
the large size bins is recovered fairly accurately, while the dis-
tribution in the lower size bins is hardly changed from the initial
guess (perturbed value). This shows that in the logarithmic rep-
resentation the small size bins span a much smaller physical
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Recovering the initial distribution, 8, and o from observations of total surface density.

volume range, and therefore contribute very little to the total
surface density. Consequently total surface (number, volume)
density observations contain more information on the large size
bin densities (which are recovered) and little information on the
small bin densities.

Finally Figure 11 shows the results for simultaneously recov-
ering the initial distribution, 8, and o. The optimized solution
shows assimilation of the initial density in largest bin sizes, and
an improvement in the 8 and o values. The total surface density
does not contain sufficient information for a complete recovery,
and these parameters are still relatively far from the reference
values, as are the initial densities in the lower bins.

The results obtained with the current initial density are typi-
cal, that is, data assimilation of other initial density profiles will
have the same qualitative behaviour.

Discrete versus Continuous Adjoints

To compare the influence of the choice of discrete versus con-
tinuous adjoint gradient on the performance of the optimization
process we consider the growth-only test problem and repeat
the data assimilation experiment (for both the initial density and
o) using a continuous adjoint gradient of the cost function. The
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FIG. 12. Recovering the initial distribution and o for growth using continuous and discrete adjoint gradients. The continuous formulation leads to a better

performance of the optimization process.
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FIG. 13. Recovering the initial distribution for coagulation using two imple-
mentations of the discrete adjoint gradients. The automatic differentiation and
the direct implementation lead to similar performance.

continuous adjoint of the growth equation is also a growth (ad-
vection) equation, and the same Discrete Galerkin numerical
solver was applied (note that in the volume density formulation
used here the advection speed, or the growth rate, is constant).
The results are shown in Figure 12. The continuous adjoint gra-
dients lead to a faster convergence of the optimization process,
as can be seen from the faster decrease in both cost function
and RMS with the number of iterations (left plot). The value
of the growth rate o is also recovered in fewer iterations (right
plot). This result is somewhat surprising as one would expect the
derivative of the numerical solution, that is, the discrete adjoint,
to be more accurate for optimization purposes.

Direct versus Automatic Implementation of
Discrete Adjoints

To assess the quality of the adjoints generated via auto-
matic differentiation (TAMC) we compare their performance
with a direct implementation of discrete adjoints as given by
Equation (13). We consider the coagulation-only test case. The
results presented in Figure 13 show that the optimization pro-
cess performs similarly with both implementations, and requires
a similar cpu time. This is expected since both approaches im-
plement the same adjoint formulas, and the TAMC code is as
efficient as the hand code for explicit time stepping.

CONCLUSIONS AND FUTURE WORK

In this paper we have developed the algorithmic tools needed
for inverse aerosol modeling. Continuous and discrete adjoints of
the integro-differential particle dynamic equation in number and
mass concentration density formulations are derived. Formulas
are obtained for the sensitivity coefficients of the solution with
respect to the coagulation kernel, the growth rate, and emission
and deposition coefficients.

The derivations are restricted to dynamics (without chemical
and thermodynamic processes) and to zero dimensions (no trans-
port processes). This is a first step toward performing data assim-
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ilation for comprehensive three-dimensional particle chemistry
and transport models.

Comprehensive tests have been carried out using a single
component particle dynamics model in a twin experiment frame-
work. Pseudo-measurements are generated from a reference
model run. From hourly measurements of the particle size one
can recover the initial distribution as well as the parameters
of the model. Measurements in only some of the bins provide
enough information to recover the initial distribution and param-
eters. Measurements of total surface, volume, or number density
are useful to adjust the unknown model parameters and initial
conditions, and provide information mainly for the large size
bins. Caution must be exercised when extrapolating these con-
clusions to the case of real observations, which are influenced by
chemical and thermodynamic processes in addition to particle
dynamics, and are corrupted by measurement errors. Aerosol
data assimilation using real observations will be the focus of
future work.

The overall conclusion is that 4D-Var data assimilation is a
feasible approach for particle dynamics models. Discrete ad-
joints can be obtained easily through automatic differentiation,
but continuous adjoints are also a viable alternative.

Testing of the computational tools developed in this paper
is planned for more realistic models and a variety of evolution
conditions. Data assimilation for a growth problem with three-
component aerosols is presented in the companion paper (Henze
et al. 2004). Future work will extend the inverse modeling of
aerosols to include chemical and thermodynamic processes. The
techniques developed will be used ultimately to perform data
assimilation in full three-dimensional models.
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APPENDIX A. DERIVATION OF THE CONTINUOUS
ADJOINT OF THE DYNAMIC EQUATION IN NUMBER
DENSITY FORMULATION

In this section we consider the general dynamic equation in
number density formulation, with particle mass the independent
variable:

on(m,t) .

0
o7 —%[I(m, tn(m, 1))

1 m
+ B / Bm',m —myn(m', yn(m —m’, t)dm’
0
[o¢]
— n(m, t)/ Bm, mHn(m’, t)dm' + S(m, t)
0

— L(@m, t)n(m, t). [A.1]
where S(m,t) is any source of particles of mass m and
L(m, t)n(m, t) is the first-order rate of removal of particles of

mass m. The cost functional to be minimized is expressed in the
general, integral form

T 00
J = / / Jo(n(m, t))dm dt. [A.2]
0 Jo

We will use the Lagrangian multiplier method to derive the
continuous adjoint equations and sensitivities with respect to all
parameters. We define the cost functional as

T 00 T 00
J = / / Jo(n(m, t))ydm dt — / / A(m, t)(LHS,
0 Jo o JO
—RHS,)dm dt [A.3]

Here LHS,, and RHS, refers to the left side and right side
of Equation (A.1), respectively. Jy is the local cost functional
component. We take variation of the functional (A.3) and obtain

T [e') 8]
8T =/ / S0 sn(m, t)dm dt
10 0 8n

T [e's)
- / / Sx(m, t)(LSH, — RHS,) dm dt
1 Jo

T 00
- / / A(m, £)(SLSH,, — SRHS,) dm dt.
0 Jo



INVERSE MODELING OF AEROSOL DYNAMICS

By exapnding the above equation, integrating by parts, and
rearrranging, the variation 6.7 can be written as:

8T = [ ' /0 OoSn(m,t)A)dmdt [A.4a]
+ /0 ” /0 " $80m, mBdm'dm [A.4b]
- /t ' /0 h SA(m, t)(LHS, — RHS,)dm dt
- /Oox(m,t)an(m,t)ﬂ;dm [A.4c]

0

T poo Ir(m, t

+ / s1(m. YD o 8y dm di [A4d]
fo 0 8m

T
— / 8I(m, t)n(m, t)\(m, t)
+8n(m, )l (m, t)A(m, t))|5°dt

T 00
+ / / 8S(m, t)M(m, t)dm dt
0 Jo

[A.de]

[A.4f]

T o)
— / / SL(m, t)A(m, t)n(m,t)dmdt [A.4g]
0 Jo

where
A % n ax(;:, t) n axg:q, t)[(m’ 5
- [ " Ao, DB, = G’ — m, £ dit
_ /0 " am. DB, mO (e, 1) dmd
- /0 " a0’ mydm’ — Xom, DL (m. )
and

T
B= / <—A(m, t)+%)\(m+m/, t))n(m, Hn(m', t)dt [A.5]

If the Lagrange multiplier X is chosen as the solution of the
adjoint equation

Ir(m,t) _ OA(m, 1)
ar am

— /00 Am', HBm, m' —mnm' —m, t)dm’

I(m,t)

+A(m, t) /OO Bm, mHn(m’, t)dm’
0
+ / Am', n(m', £)B(m’, m) dm'’
0
+ A(m, t)L(m,t) — %
an

then the term A = 0.
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To deal with the terms — [~ A(m, 1)dn(m, t)|Tdm, fT

fo to
81 (m, t)n(m, t)A(m, 1)|5°dt and j;oT Sn(m, t)I(m, )A(m, t)|°
dt, we impose the following boundary and initial conditions

Am,t =T)=0 [A.6a]
Am=0,1)=0 [A.6b]
nim = +00,t) = 0= dn(m = 4o00,1) =0. [A.6c]

Then the variation § 7 simplifies to
o0
8J = / dn(m, ty) - M(m, to)dm
0
o0 o0
+ / / 8B(m, m’) - Bdm'dm
o Jo

T o ar(m, t)
+ 8I(m,t) - n(m,t)dmdt
1o 0 om

T 00
+ / / 8S(m,t) - M(m, t)dm dt
0 Jo
T 00
— / / SL(m,t)- X(m, t)n(m, t)dmdt
0 Jo
Therefore the values of the functional sensitivities are:

Vol = Am, ty)

T
Vﬁ(m,m’)j = / < - )L(ms t)
to

[A.7a]

+ %A(m +m, t))n(m, Hn(m’, t)dt [A.7b]

Vimnd = E))L(m’t)n(m,t) [A.7c]
VS(m,t)x.7 = A(m, t) [A7d]
Vimnd = —A(m, t)n(m, t) [A.7e]

APPENDIX B. DERIVATION OF THE CONTINUOUS
ADJOINT OF THE DYNAMIC EQUATION IN MASS
DENSITY FORMULATION

We consider the dynamic equation in mass density for com-
ponentsi =1,2,...,r:

dq;(m,t) 0
SR S = Him, 0q(m. 1) = ——(mq;H]
t om

m /
_ 1
+ [ g =g T g
0 m

—qi(m, 1) / " pom. m’)q(m/,’ D im
0 m

+m;S(m,t) — L(m, t)q;(m, t).

[B.1]

where the source term m;S(m,t) and the removal term
L(m, t)q;(m, t) have the same units. m = Y ;_, m;, g(m,t) =
Z;:l qi(mv t), Him, t) = Z;:] Hi(m,t).
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We use the Lagrange multiplier method to derive the continu- © B(m’, m) & )
ous adjoint equation considering perturbations in all parameters. + / B X:[A j(m +m’, 1)

The cost functional is defined as J=1

—Ajm',0)lq;m', tydm" — ri(m, t)L(m, 1)

T 00
~7=/ / Jolgi(m, 1), g2(m, 1), ..., q,(m, t))dmdt
0 Jo

and
i/T /OO
- Ai(m, )(LHS,; — RHS,))dm dt [B.2] e ,
0 = Z/ |:Ai(m +m', g (m’, t)q(m, )
=1 Y1 m
Here LHS,; and RHS,; refers to the left side and right side ( )
of Equation(B.1), respectively. Jy is the local cost functional —Ai(m, t)gi(m, t ) :| [B.5]
component.
Taking the variation of Equation (B.2) gives Imposing A; = 0 leads to the adjoint equation
5T = fT /OOZ 9o (m, t)dm dt dri(m, 1) " Iri(m, t)
10 (- aq, T = —ij(m,t)Hj(m,t)—mH(m,z‘)T
T poo r =1
— SAi(m, t)(LSH, — RHS,;)dm dt *© B(m, m") ,
/xo ./(; ; ! 1 —/0 T[Ai(m+m,t)—ki(m,t)]
T r
- OOZA-(m OS(LSH, — RHS,;)dm dt [B.3] ' Y UV ORS /
ilm, qi qi : xq(m',t)ydm' — —Z[Aj(m+m,t)
0 Jo o 0 m
After integrating by parts and rearranging 8.7 can be written = Aj(m', Dlq;(m', t)dm’ + ki(m, )L(m, 1)
in a compact form: _9Jo
rr (m, 1)
r T oo '
8T = Z/ / 8qi(m, )A;dm dt Then
i=1 Y0 JO
+ / / 8B(m, mHBdm' dm o[>
o Jo VEDY [ dilm. 10)3q;m, 1)) dm
r o) i=1
+ 8qi(m, to)ri(m, to) dm o oo
;/(; aiom, to)i(om, to) — / / 8B(m, m"HBdm' dm
S LT pos
+ / / SH;(m, t)|:)»,-(m, t)g(m,t) _
P + Z Ai(m, 1)q(m, 1)
i=1
+ qu/(m ’) ]d dt + qu,(m r) (m )}(SHi(m,r)dmdt
+ Z:/ / 85(m, O2i(m, midm dt + Z/ / 2i(m, Hm;8S(m, £)dm dt
! i=1
— SL(m, ) i(m, t)gi(m,t)dmdt [B.4] _ ) )
;fto fo Z i ,\,(m,t)q,(m, H)SL(m, t)dm dt
where Therefore,
A = aJy i dA;(m,t)
" dg at V0T = ki(m, 1) [B.6a]
q(m )

+ Zk (m, O H;(m, ) + mH(m, z)%

j=1

+ / W[Ai(m +m',t) — Ai(m, )gm’, t)dm’ — Ai(m, H)gi(m, t)q( t)i|dt [B.6b]
0

VomamyJ = Z / [x (m+m', 0)gi(m’, ) ——
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Viomond = Ai(m, t)qg(m, t)

é A (m, 1)
(m, ) —L——= B.6
+ ;mq,<m, = [B.6c]
Vsmnd = Y miki(m, 1) [B.6d]
i=1
Vimand = —Zki(m, Dgi(m, 1) [B.6e]
i=1

APPENDIX C. DERIVATION OF THE DISCRETE
ADJOINT OF THE DYNAMIC EQUATION

For an ordinary differential equation

0

y=fty), *<t<T, yi° =)

and a cost functional
T
7= [ nowyar
10
the continuous adjoint equation reads
aJi
K=—fleyn-S20, <i<T. M) =0.
y

Here f, denotes the Jacobian of f with respect to y. Note that
the adjoint equation depend on the state variable y of the forward
equation.

For the Forward Euler discretization and a discrete in time
cost function

N
Y =y At ), T =) 6N,
k=1

the discrete adjoint equation is obtained from the interpretation
of adjoint variables as derivatives of the cost functional and the
application the transposed chain rule

o (20
-(&

e i 007 _ daE0h | ﬁ: 9430
oyt oy ot S
_ oY, 5~ 810’0")(”_"“)
ay* il SN

Cakoh | <3yk+1>
dy* IyEFtA 9yt
_ afgk;f 2 aikjﬂ U+ Atfy(eh, 5%

: : ATEOONT e
Ak — kg AtfyT(tk’yk))LIle _|_( oQ )) 5%,
ayk
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In the above derivation we used the causality, that is, the fact
that y* does not depend on y/ for j < k. In practice the times
where the cost functional is defined are multiples of the dis-
cretization time step, and the factor §0° equals 1 if % is a
time used in the definition of the cost functional, and equals 0
otherwise.

The numerical experiments presented in this paper use the
two stage, second order, strongly stable, explicit Runge Kutta
method

yh =y Arf it b

1 , [C.1]
Y = 5<2y/‘ + Atf (I ).

The discrete adjoint can be derived using an approach similar
to the one used for Forward Euler

1

o=t 4 ATk, Yo

The discrete adjoints for the particle dynamic equation are
obtained by applying this formulation with the Jacobian f! of
the semidiscrete Equation (3)

£l n) =G )+ F () + (B +B") x n()]A™" — L(1),
where

{[(B + B") x n(O]}i,; = {n" (1)(B" + (B))};.

APPENDIX D. DERIVATION OF THE DISCRETE
ADJOINT OF THE SEMI-IMPLICIT METHOD

In this section we derive the discrete adjoint of the popular
semi-implicit method for solving the coagulation equation. In
this approach the particles are divided in s bins, and all particles
in bin i have the same volume v;. The coagulation of particles
of volumes v; and v; forms particles of volume V; ; = v; + v;.
These particles are distributed to the nearest bins, a fraction f; ; x
going to bin k, and the reminder going to bin kK — 1. The fraction
coefficients are defined as:

Vg1 — Vi vk

v < Vij < v k< Np
Vir1 — U Vi
fi,j,k =]1- f,‘yjqkfl Vi1 < V,j < Vg k>1
1 V,"j > Uk k= Np
0 all other cases

The number concentration in bin & at time ¢* is denoted by 7.
The concentration changes during one time step t‘+! = ¢ + §¢
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by the formula

e ﬂk+(At/Uk)Z D ﬁ.j,k%ﬂi,j"f“nﬁ
ntH

_ . [D.1
k L+ A Y (= fij)Bin’ .

This equation is solved iteratively fork = 1...s.
To derive the discrete adjoint consider again the transposed
chain rule

aJ\"
(3w)
0J _ aJ an"t! M_(an“'
ont  onttl 9nt ont

)"[

T
) 2 =872 [D.2]

From (D.1),we can derive that

ant! At G antt!
—k_ — 5 +_Z fiiwviBi i ——n'
L P L KEEEL ] ¢
on;, (S e on;,
Zflpkvt/gl pn
i=1
N an(-‘rl
—ArZ(l—ﬁ,k>ﬁk,n, n

- Af(l — fep)Bipni! [D.3]

Introduce the notations

£+1
ony
an',

Ske =

At
Crp = Zf, Wi Bt = AL = fip 0B pni
i=1

A.SANDU ET AL.

Af &
__Zﬁ,j,kviﬁ,-,jnﬁ- for i=1...k—1
Uk =
Dk,i = N
L+ ALY (1= fojo)Begn’ for i=k
=
0 for i=k+1.

The Equation (D.3) can be written as

k—1
Dk,kSk,p = Sk,p — ZD/‘»,,‘S,‘J, + Ck,p =DS=1+C. [D4]

i=1
From (D.2) and (D.4)

)\‘K — ST)LK+1 — (1 +CT)D_T)\,K+1,

or equivalently
AM=z+CTz.

DTZ — )\’Z-i-l’

Since DT is an upper triangular matrix the system in z can
be solved by a backwards substitution, in the same fashion the
forward equation is solved. The complete adjoint formula is
therefore

)"]€+1 - Zi:k.}r] ((A[/U,.) Z;‘:l fk,j,]‘vkﬁk,jnﬁ) Z

L4 Ar Y5 (= frj)Brn’
for k:s,s—l...l

K k—1
MW=z, 4> ((Ar/vk) > fipaviBipnit!
k=1 i=1

—At(1 — fk,p,k)ﬂk,,,nﬁ“)zk for p=1...s.

Z =

[D.5]



