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[1] An adjoint model is used for inverse modeling of black carbon during the Asian
Pacific Regional Aerosol Characterization Experiment (ACE-Asia). We use the four-
dimensional variational data assimilation (4D-Var) approach to optimally recover spatially
resolved anthropogenic and biomass-burning emissions and initial and boundary
conditions of black carbon. Boundary conditions and biomass-burning emissions are
assigned daily scaling factors. Anthropogenic emissions are scaled by a combination of
daily and monthly scaling factors. Simulation results are compared to various observations
of black carbon concentrations during the campaign. Measurements at five islands and
on board the research vessel Ronald H. Brown are used for inverse modeling. Different
levels of constraints are examined for inversion, and a case with 62% reduction in the total
square errors is chosen. The assimilated results are compared with the observations on
board the Twin Otter aircraft that were not used for assimilation. Among the scaled
variables, anthropogenic emissions are the most significant, followed by the boundary
conditions. The domain-wide emissions inventory does not change significantly as a result
of the assimilation, but sizable changes occur on the subregional level. Most noticeably,
anthropogenic emissions over southeastern China are reduced while those in northeast
China and Japan are increased.
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1. Introduction

[2] Black (or elemental) carbon (BC) is the main light
absorbing aerosol species; it alters the radiative properties of
other aerosols with which it is mixed, and it may affect
cloud formation and precipitation. In short, understanding
the regional and global distributions of BC is key to
predicting the effect of aerosols on global and regional
climate. A number of investigators have simulated top of
the atmosphere (TOA) direct radiative forcing of black
carbon, values of which range from approximately +0.1 to
+0.8 W/m2 [Haywood and Shine, 1995; Haywood et al.,
1997; Haywood and Ramaswamy, 1998; Penner et al., 1998;
Myhre et al., 1998; Cooke et al., 1999; Jacobson, 2001,
2002; Koch, 2001; Chung and Seinfeld, 2002; Wang, 2004].
The wide range of estimates is primarily a result of different
assumptions about the mixing state of BC with sulfate

aerosols and of the global burden of BC. A significant
source of uncertainty in the estimates is the BC emissions
inventory itself. Global and regional emission inventories of
BC have been refined [Cooke and Wilson, 1996; Liousse et
al., 1996; Cooke et al., 1999; Streets et al., 2003a; Bond et
al., 2004; Schaap et al., 2004]; nevertheless, emissions
uncertainty remains a significant contributor to the overall
uncertainty in predicted global BC distributions. These
uncertainties play an even more significant role in regional/
episodic simulations, where the actual emissions are more
likely to deviate from the annual mean inventory. Regional
studies present a particularly advantageous opportunity to
evaluate our understanding of the relationship between
observed BC levels and existing emissions inventories.
Furthermore, owing to its relatively short atmospheric
lifetime (4–10 days), BC emissions have their most
pronounced effect on the regional scale.
[3] Inverse modeling provides a powerful approach for

observation-based inference about atmospheric model
inputs (e.g., emissions). Methods based on the Kalman
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filter and its variations assume an imperfect (noisy) model
and are able to propagate the error characteristics through
the formalism of the method. Kalman filtering has been
widely applied to meteorological and atmospheric data
assimilation problems [Menard et al., 2000; Khattatov et
al., 2000]. Methods based on the Kalman filter tend to be
computationally demanding and therefore have seen limited
use in large-scale atmospheric chemical transport models
(CTMs) [Mulholland and Seinfeld, 1995; Houtekamer and
Mitchell, 1998; van Loon et al., 2000]. Alternatively, adjoint
modeling [Marchuk, 1974, 1986; Cacuci, 1981] can be used
to calculate gradients of an objective function with respect
to model input parameters. In adjoint analysis, the model is
considered as a strong constraint for the problem; that is, the
model is assumed to be perfect. Adjoint data assimilation
[Talagrand, 1981a, 1981b; Le Dimet and Talagrand, 1986;
Talagrand and Courtier, 1987] has been used in meteorol-
ogy and oceanography [Courtier and Talagrand, 1987;
Navon, 1997; Usbeck et al., 2003].
[4] In the context of three-dimensional (3-D) Eulerian

CTMs, adjoint modeling offers an efficient method for
inverse modeling applications, as desired gradients of the
objective function are calculated simultaneously. Elbern
and Schmidt [1999] applied the adjoint method to the
European air pollution dispersion chemical transport model
2 (EURAD-CTM2) for data assimilation. They present a
variety of identical twin experiments to verify the adjoint
implementation; most notably they were able to recover
initial concentrations of NOx and VOC from ground level
ozone observations. In an identical twin experiment, the
simulation results for a perturbed set of parameters are used
as observations, and the adjoint analysis is used to recover
the applied changes in parameters. The advantage of the
identical twin experiment is that the true answer to
the inverse problem is known. Elbern et al. [2000] used
the same model and methodology for recovery of NOx and
VOC emission rates from ozone observations. Vukicevic
and Hess [2000] implemented adjoint modeling in HANK,
a chemical transport model based on MM5 meteorological
outputs. The sensitivity of hypothetical soluble and insolu-
ble species concentrations at Hawaii with respect to a
variety of different model parameters was calculated.
Vautard et al. [2000] apply an adjoint version of
the chemical transport model CHIMERE [Menut et al.,
2000] using ozone observations for recovery of urban
boundary ozone values. Elbern and Schmidt [2001] used
EURAD-CTM2 and applied four-dimensional variational
(4D-Var) data assimilation to an ozone episode over central
Europe to optimize various initial concentrations. Schmidt
and Martin [2003] and Menut [2003] applied the adjoint
technique in CHIMERE for episodic sensitivity analysis.
Sandu et al. [2005] formulate continuous and discrete
adjoints for implementation in chemical kinetic systems
[Sandu et al., 2003] and 3-D air quality models. They apply
the method in the chemical transport model STEM-2k1
[Carmichael et al., 2003b] for sensitivity analysis and
recovery of various initial conditions in identical twin
experiments.
[5] Here, we adapt an adjoint model of the chemical

transport model STEM-2k1 [Carmichael et al., 2003b;
Sandu et al., 2005] for assimilating BC concentrations
and recovery of its emissions (anthropogenic and biomass

burning), boundary conditions, and initial conditions in
eastern Asia during the Asian Pacific Regional Aerosol
Characterization Experiment (ACE-Asia) field study
[Huebert et al., 2003; Seinfeld et al., 2004]. East and
Southeast Asia are major contributors to the total global
BC burden [Bond et al., 2004], and the ACE-Asia campaign
provides a unique opportunity to better constrain these
emissions. Our goal is to employ BC measurements carried
out during ACE-Asia (April 2001) to optimally estimate
east Asian BC emissions (and initial and boundary con-
ditions). The long assimilation window is essential for
regional inverse modeling, where long-range transport of
pollutants becomes important. Assimilation is based on
direct observations of BC aerosol mass concentrations in
four Japanese islands along �140�E longitude, Gosan,
South Korea, and on board R/V Ronald H. Brown.

2. Adjoint Formulation

[6] The equation governing the dynamics of a chemically
nonreactive species (e.g., BC) in atmospheric CTMs is
[Seinfeld and Pandis, 1998; Jacobson, 1998]

@C

@t
¼ �r � uCð Þ þ r � KrCð Þ þ E � kwC ð1Þ

where C is the concentration of the species, u is the vector
wind field, and K is the diffusivity tensor. E represents
elevated emissions, and kw is the first-order rate constant for
wet removal of the species. Equation (1), which in inverse
modeling is referred to as the forward model, is solved
subject to specific initial and boundary conditions; while the
formulation of these conditions may vary slightly from one
CTM to another, they invariably contain similar key input
parameters. For STEM, the initial conditions, surface
boundary condition, and lateral inflow boundary conditions
are [Sandu et al., 2005]

C w; t0ð Þ ¼ C0 wð Þ
C w; tð Þjw2Gin¼ Cb w; tð Þ

K
@C

@w
jw2Gout¼ 0

K
@C

@w
� vdC þ E0

� �
jw2Ggr¼ 0

ð2Þ

where w is a generalized spatial coordinate vector, C0 and
Cb are the initial and boundary concentrations, respectively,
and G represents the boundary cells (inflow, outflow, or
ground level); vd is the species dry deposition velocity, and
E0 is its surface-level emission rate.
[7] In adjoint sensitivity analysis, the gradients of a scalar

function J with respect to a set of input parameters are
calculated. For data assimilation applications, this scalar
takes the form of an objective (cost) function, and is
generally defined as

J C;Að Þ ¼ 1

2

1

m

ZtF
t0

Ab �A
� �T

N�1 Ab �A
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D14301 HAKAMI ET AL.: ADJOINT INVERSE MODELING OF BLACK CARBON

2 of 17

D14301



where Ĉ and C are vectors of the observed and simulated
concentrations (temporal and spatial dependences are
omitted for simplicity), respectively. t0 and tF are the initial
and final times of the simulation; A denotes the set of input
parameters that are to be optimally estimated in the
assimilation, and A

b is the vector of initial (background)
estimates for those parameters. Uncertainty in the data and
inputs is incorporated into the objective function through
the error covariance matrices for the observations and
inputs, R and N, respectively. In so doing, observations or a
priori estimates with high uncertainty have a lower
contribution to the overall objective function. m is a global
weighting factor (a regularization parameter) for assigning
relative emphases on either the observations or background
values (discussed later in the text). The objective function is
evaluated for grid cells and times where observations are
available. For uncorrelated errors and discrete temporal and
spatial observations, the scalar objective function can be
written as

J ¼ 1

2

1

m

X
k

N�1
k

ab
k � ak

� �2" #
þ 1

2

X
i

X
j

R�1
ij

Ĉij � Cij

� �2" #

ð4Þ

where indices i and j represent the time and location of
the observations, and index k represents the particular
parameter to be estimated.
[8] A perturbation in the input parameters, dA, translates

into perturbations in the simulated concentrations and the
cost function, dC and dJ. Applying a Lagrange multiplier l
to the perturbed form of equation (3) (and assuming
uncorrelated observation errors) results in [Marchuk,
1986; Vukicevic and Hess, 2000; Elbern et al., 2000; Sandu
et al., 2005]

dJ ¼ 1

m

Z
t

A�Ab
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N�1dAdt þ
Z
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�
Z
t

Z
W

l
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�
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where f(w, t) = [(C � Ĉ)/R(w, t)] is the observation-driven
forcing term for the adjoint system. After integration by
parts and rearrangement, the following equation can be used
to calculate the time- and location-dependent gradients of
the cost function
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provided that l, the adjoint variable for the concentration,
satisfies the following adjoint equation

� @l
@t

¼ r � ulð Þ þ r � Krlð Þ � kwlþ f w; tð Þ ð7Þ

subject to the following conditions:

l tFð Þ ¼ 0

ljw2Gout¼ 0

K
@l
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K
@l
@w

� vdl
� �

jw2Ggr¼ 0 ð8Þ

AI, AB, AE, and AE0 in equation (6) represent the initial
conditions, boundary conditions, elevated emissions, and
surface emissions, respectively. Note that the adjoint
equation is driven by differences between observations
and simulations (the forcing term f). Note that the negative
sign for the time derivative term in equation (7) indicates
that the adjoint equation is integrated backward in time from
tF to t0.
[9] Equation (7) and the initial and boundary conditions

in equation (8) uniquely define the solution for the adjoint
system. Once the adjoint is integrated backward in time, the
gradients of the cost function can be calculated on the basis
of equation (6). These equations are derived for the contin-
uous equation (1) and must be solved numerically. Alterna-
tively, one can derive the adjoint equation for the numerical
(discretized) solution to equation (1). The two alternatives
are not exactly equivalent, as the adjoint and discretization
operations are not generally commutable [Sirkes and
Tziperman, 1997; Sandu et al., 2003]. The discrete gradient
equation based on numerical algorithms used in STEM
[Sandu et al., 2005] can be written as

dJ ¼ 1

m
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�
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� �
ð9Þ

where e represents an individual dimensionless scaling
factor applied to each of the input parameters (distinguished
by the subscripts), i.e., ak = ekak

b. The function fk is defined
as fk = max (ek, 1/ek) and f 0k is its derivative with respect to
the individual scaling factor. This form of background-
driven cost is used to assign equivalent penalties to scaling
up or down from the background values. Superscripts b, b1,
and b2 show the outside, first, and second stripe of interior
boundary cells, respectively. For horizontal advection, a
third-order upwind numerical scheme is used, hence the
term for the second interior stripe in the boundary condition
gradient. During the assimilation process each of the
scaling factors (all of which have an initial value of one) is
optimally estimated. By employing the scaling factors, the
optimization process focuses on the input parameters with
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larger magnitudes. Also, by optimizing for the scaling
factors (rather than the real fields), all input parameters are
uniformly represented in the cost function. Another
advantage of using scaling factors is that input parameters
with a magnitude of zero will not play a role in the
optimization; for example, a grid cell with zero emissions
(over the ocean) cannot have any emissions assigned to it
as a result of the optimization. Alternatively, one may
optimize the emissions only in the prescribed areas (i.e.,
excluding the ocean), and thus reducing the size and cost
of the optimization problem.

3. Inverse Modeling of Black Carbon Over
East Asia

[10] The objective of inverse modeling is to estimate the
input parameters in order to achieve optimized model
performance, i.e., to minimize the cost function. In the
larger scheme, it is desirable to identify any existing biases
and systematic errors in the input estimates. CTMs and
general circulation models (GCMs) require a multitude of
inputs, many of which are highly uncertain. Furthermore,
most of such inputs vary in space and/or time. As a result, a
large number of input parameters can be estimated in the
assimilation process. As the available observations are
usually scarce, atmospheric inverse modeling is often an
extremely underdetermined problem.
[11] Equation (9) (or equation (6) for continuous form)

allows for calculation of the gradient of the cost function
with respect to any input parameter at any location and/or
time. The 4-D adjoint analysis results in spatial and tem-
poral distributions of the gradients of the objective function.
These gradients directly link the objective function to the
input parameters at different times and locations, taking into
account all physical processes that are included in the
model. In other words, adjoint results can be easily used
to objectively identify locations and times that most affect
model performance.
[12] The CTM used in this study is the adjoint version of

STEM-2k1 [Sandu et al., 2005; Carmichael et al., 2003b], a
parallel implementation of STEM using the communication
and parallelization library of PAQMSG [Miehe et al., 2002].
The model utilizes an operator-splitting scheme, and in the
parallel mode breaks the computational domain into hori-
zontal and vertical slices to be sent to available processors.
For each time step, the required data (emissions, wind field,
etc.) are gathered and processed by the master node, while
computations are distributed among the worker nodes. The
model uses efficient two-level checkpoint storage, as the
state vector (concentrations) is required for the integration
of the adjoint in nonlinear processes. However, as BC is
chemically nonreactive, chemistry is not active and no
checkpoint is required.
[13] The modeling domain for this study extends approx-

imately between 10�N, 50�N, 90�E, and 155�E, as shown in
Figure 1. The computational domain consists of 90 � 60 �
18 grid cells. Horizontal grid resolution is 80 km, and
variable vertical spacing follows the topography of the
terrain. The simulation period is the month of April 2001.
Adjoint analysis and scaling is conducted for the monthlong
assimilation window. The meteorological fields (winds,
turbulence, precipitation, etc.) for STEM are produced by

the mesoscale meteorological model RAMS [Pielke et al.,
1992]. Base case boundary conditions are taken to be time-
invariant and for each altitude are set to the fifth percentile
of all the observations during the TRACE-P measurements
[Carmichael et al., 2003b]. Boundary conditions for all
lateral boundaries in each vertical layer are set to the same
value, and the model does not account for time- and
location-specific variabilities in lateral boundary conditions.
Initial conditions are calculated from the simulations of the
previous month (March 2001).
[14] BC lifetime and concentrations can be strongly

affected by precipitation if the BC occurs internally mixed
with soluble species. The first-order wet removal constant is
assumed to depend on the precipitation rate via the follow-
ing empirical relation [Uno et al., 2003a], kw = 10�5 h0.88,
where kw is the first-order removal rate constant (s�1), and
h is the precipitation rate, in mm h�1. The constant (10�5) is
chosen on the basis of forward sensitivity analysis with
respect to the magnitude of the constant such that the model
overpredictions at four Japanese stations during the precip-
itation episodes are minimized, and it corresponds to �20%
of the value used for the wet removal of sulfate aerosols
[Uno et al., 2003a].
[15] The basic gridded BC emission inventory is based on

the regional gaseous and aerosol primary emissions inven-
tory for the year 2000 of Streets et al. [2003a, 2003b],
specifically developed for support of the intensive field
studies in the region, TRACE-P [Jacob et al., 2003] and
ACE-Asia. The inventory was prepared using a bottom-up
approach and is based on energy consumption and activity
information for various emission sectors: industrial, resi-
dential, transportation, power generation, agricultural, bio-
mass burning (BB), and others. The biomass-burning
inventory was prepared using vegetation cover maps, satel-
lite fire count data, and a variety of other open fire
information [Woo et al., 2003]. The overall uncertainty in
BC emissions (BB and other anthropogenic sources) is
considered to be one of the largest among different species
represented in the inventory. In different regions, total
anthropogenic emissions and BB have a range of uncertainty
(95% confidence interval) of 80–490%, and 200–700%,
respectively. Over all of Asia, the uncertainties in anthro-

Figure 1. Modeling domain for the adjoint inverse
modeling. Observation sites considered for assimilation
are also shown.
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pogenic and BB emissions are estimated at about 360 and
450%, respectively [Streets et al., 2003a].
[16] From an implementation point of view, BC emis-

sions are separated into open BB and (other) anthropogenic
emissions (i.e., fossil and biofuel). For biomass burning, the
files contain the spatial distribution of the daily emissions. It
is assumed that the rate of emission for each grid cell
remains constant throughout the day. These daily values
are then distributed into different vertical layers. The
anthropogenic emissions are aggregated from different
emission sectors (except BB) into one file. This input file
contains gridded BC diurnal emissions (18 vertical layers)
for a typical day in April 2001. Therefore the available
emissions do not provide information on day-specific var-
iability for anthropogenic BC, or on time-specific variability
for BB emissions of BC. Furthermore, BB emission inputs
do not account for location-specific variability in vertical
profile of BC emissions. These limitations (in addition to
that pertaining to boundary conditions) are relaxed in the
time- and location-dependent scaling of input parameters
through adjoint inverse modeling.
[17] Four different types of input parameters are

scaled for BC assimilation: anthropogenic BC emissions
(first 4 vertical layers in the boundary layer, time-
dependent), biomass-burning BC emissions (first 12 vertical
layers, time-dependent), lateral boundary conditions
(18 layers, time-dependent), and initial conditions
(18 layers). The scaling factors for biomass BC emissions
and boundary BC concentrations are considered as daily
averages, and their corresponding gradients are integrated
over each day. Scaling factors for initial BC concentration
are time independent. For anthropogenic BC emissions, the
scaling factor is assumed to include a monthly portion (the
gradient of which is integrated over the entire month), and a
daily portion that is added to the monthly scaling factor. For
all types of parameters, one scaling factor is assigned to each
grid cell in the computational domain. The monthly and
daily portions are assigned initial values of one and zero,
respectively. The daily portion allows for limited day-to-day
variability in the emissions for each grid cell. Assimilation
and parameter optimization is an iterative procedure. A
quasi-Newton limited memory optimization routine, L-
BFGS [Byrd et al., 1995], is used for optimization after
each iteration. Four-dimensional (time and space) data
assimilation results in a field of scaling parameters (3-D
in case of initial conditions, and monthly anthropogenic BC
emissions) following each iteration.

4. Black Carbon Observations During ACE-Asia

[18] During the ACE-Asia campaign, an extensive net-
work of aircraft, shipboard, and surface instruments was
utilized to measure different characteristics of the regional
aerosols and their gaseous precursors. Observations included
mass concentrations of BC, as well as frequent measure-
ments of aerosol optical (absorption) properties, from which
BC mass concentrations can be estimated.
[19] The success of any inverse modeling depends criti-

cally on the amount of data available for analysis. Since the
three-dimensional adjoint equations are driven by the dis-
crepancy between observations and simulation, greater
spatial coverage (i.e., more observation sites) will signifi-

cantly enhance the ability of the adjoints to capture the areas
of influence on the objective function. In other words,
comprehensive temporal and spatial coverage of observa-
tions provides the best opportunity for high-quality inver-
sion. Whereas it was deemed important to include all the
applicable BC observations in the analysis, it is also
necessary to assign some measure of reliability to the
available observations. Three main factors can contribute
to the degree of importance of the observational data sets for
inverse modeling:
[20] 1. Low uncertainty: In addition to the obvious case of

measurement/sampling uncertainty, particular attention
should be paid to the representativeness uncertainty, i.e.,
the uncertainty in representing a grid cell or computational
node by a single point measurement.
[21] 2. High time resolution: Short-term observations

produce more of an impulse perturbation in the adjoint
variables than those that are averaged over a long time. In
the latter case, underpredictions and overpredictions may
cancel each other and result in loss of information in the
adjoints. It should be noted, however, that very low sam-
pling frequency (i.e., grab sampling) usually results in
increased uncertainty.
[22] 3. Added spatial coverage: As mentioned above,

more complete spatial coverage results in better representa-
tion of the adjoints, and in more information about the areas
of influence. Therefore a low-quality data set in an other-
wise undersampled location may be more important than
higher-quality, but spatially redundant, observations. In
addition, proximity of the observations to the more impor-
tant parameters (e.g., emissions in a particular region) can
be a significant advantage.
[23] For the current study, short-term BC mass measure-

ments are the most suitable type of observations for inverse
modeling. Mass concentrations deduced from optical mea-
surements are inherently more uncertain, because of vari-
ability in the specific mass absorption efficiency [Chuang et
al., 2003; Clarke et al., 2004], and are therefore considered
less reliable and are not used in this study. The available BC
measurements that are considered for this study are sum-
marized in Table 1.
[24] The Variation of Marine Aerosol Properties (VMAP)

network was designed for the estimation of latitudinal
gradients of aerosols along the �140�E longitude, and
provides the largest number of BC mass observations for
the ACE-Asia. Another important set of observations is
daily measurements at Gosan, as they were cross-examined
with independent measurements at the station. The obser-
vations on board the research vessel (R/V) Ron Brown are
also of particular interest, as they are sampled over a short
period of time and are unaffected by direct emission
sources.
[25] We compare all the observations listed in Table 1

with the model predictions. BC measurements at Gosan,
VMAP network, and on board R/V Ron Brown are used for
inversion. Data collected at Kwangju and Yulin seem to be
too closely affected by the local sources to be properly
represented by the coarse grid size employed in this study.
For airborne measurements that span over multiple grid
cells during the course of one sampling period, the distri-
bution of the forcing term in the adjoint equation among
those grid cells becomes an additional source of uncertainty.
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Observations made on board the C-130 and Twin Otter
aircraft are therefore used for independent evaluation of the
inverse modeling and optimization.

5. Results and Discussion

[26] STEM-2k1 is applied to the ACE-Asia domain as the
forward model for simulation of BC concentrations and
adjoint values during the month of April 2001. Figure 2
shows an example of the predicted spatial distribution of
ground-level BC at the time of the maximum simulated
concentration during the month of April 2001. Ground-level
BC concentrations have a range of 0–5.5 mg/m3 during the
month, and higher concentrations are simulated in the
proximity of the major emission areas of western India
and eastern China. BC sources are dominated by the
anthropogenic emissions, but the highest concentrations
coincide with episodes of significant contributions from
BB sources (between 30 and 50% of the total emissions);
downwind of major emissions more moderate concentra-
tions are simulated.
[27] The time series of simulated BC concentrations

based on the starting emission inventory are compared to
the VMAP observations at the four Japanese islands of
Chichijima, Hachijo, Sado, and Rishiri (Figures 3a and 3b).
In general, the simulations capture the overall behavior and
variability of the observations; however, significant differ-
ences exist between the simulated and observed concen-
trations. In particular, there are significant underpredictions
at Rishiri and Sado. Similar underpredictions are reported by
Uno et al. [2003b], who suggest underestimates of Japanese
biomass-burning emissions before the rice-planting season
as a possible explanation. In their work, the same underlying
meteorological model (RAMS) [Pielke et al., 1992] and
emission inventory [Streets et al., 2003a] was used, but
the model did not include wet removal and assumed zero
inflow boundary conditions. The effect of including wet
removal in the simulations is also shown in Figures 3a
and 3b. Without wet removal the model significantly
overestimates BC concentrations at Chichijima and
Hachijo. Note that during this period the northern islands
of Rishiri and Sado rarely experience heavy precipitation
episodes, and therefore inclusion of wet removal has little
effect on the BC concentration (and overestimation) at
those stations.
[28] VMAP BC measurements provide important infor-

mation with high temporal resolution and consistency
across the stations and therefore form the basis for the
current inverse modeling. Figures 4a and 4b show simulated

and observed BC concentrations at a few other stations
during the ACE-Asia campaign, namely Gosan [Chuang et
al., 2003; Schauer et al., 2003], Kwangju [Kim et al., 2004],
and Yulin [Xu et al., 2004], as well as aboard R/V Ron
Brown [Lim et al., 2003]. At Gosan, the simulated BC
concentrations are generally lower than the observations.
The most significant differences are observed during the
periods of yellow sand dust storms (10–13 and 24–
27 April). Unexpectedly, during these dust events a large
fraction of BC is present in the coarse mode [Chuang et al.,
2003]. Chuang et al. [2003] associate the coarse mode BC
with the coagulation of fine aerosols onto the coarse dust
during long-range transport. The simulations presented
here, however, do not consider the coagulation processes
and should represent all BC concentrations regardless of
aerosol size. The measurements at Gosan are deemed
among the most reliable BC observations during ACE-Asia,
as they were verified by intercomparison with independent
side-by-side sampling and analysis. Therefore the under-
predictions at Gosan may be a result of underestimated or
uninventoried emissions.
[29] Observations at Kwangju and Yulin are grossly

underpredicted (Figures 4a and 4b). These two sites are
likely close to the local emission sources; the 80 km grid
resolution implemented in this study is not capable of
resolving concentrations in the vicinity of strong local
sources. Because of the large grid size, the same problem,
but to a lesser extent, can even exist for VMAP stations. On
board the R/V Ron Brown the simulated and observed BC
concentrations agree more closely (Figure 4b), although the
simulation does not consistently reproduce the observed

Figure 2. Spatial distributions of BC concentrations at its
monthly peak, on 7 April, 0100 UTC.

Table 1. Summary of the Observations Considered for This Study

Site/Platform Location Sampling Duration Number of Observations Cut Point Use in This Study Reference

VMAP-Chichijima 27.0�N, 142.2�E 4 hours 165 2.5 mm assimilation Matsumoto et al. [2003]
VMAP-Hachijo 33.2�N, 139.8�E 4 hours 164 2.5 mm assimilation Matsumoto et al. [2003]
VMAP-Sado 38.3�N, 138.4�E 4 hours 178 2.5 mm assimilation Matsumoto et al. [2003]
VMAP-Rishiri 45.1�N, 141.2�E 4 hours 172 2.5 mm assimilation Matsumoto et al. [2003]
Gosan 33.3�N, 126.2�E 15–30 hours 30 2.5 mm assimilation Schauer et al. [2003]
Kwangju 35.1�N, 126.5�E �24 hours 28 2.5 mm none Kim et al. [2004]
Yulin 38.3�N, 109.7�E �24 hours 29 2.5 mm none Xu et al. [2004]
Ron Brown moving 1–5 hours 118 1.0 mm assimilation Lim et al. [2003]
C-130 moving 0.4–3 hours 64 1.0 mm verification Huebert et al. [2004]
Twin Otter moving 1–5 hours 15 1.0 mm verification Mader et al. [2002]
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values. The closer agreement at sea is likely a result of the
absence of local sources near the ship.
[30] The adjoint equation is forced (driven) by the discrep-

ancy between the simulated and observed concentrations, at
the time and location of the observations. The temporal and
spatial distributions of the adjoint variables characterize the
areas of influence on the overall objective function; that is,
the concentrations and emissions at the locations and times
with significant adjoint values (positive or negative) play a
more important role in assimilating the observations. The
adjoint variable is used to calculate the gradient of the
objective function with respect to different input parameters
in equation (9). These gradients are the sensitivities of the
objective function with respect to various scaling factors in
equation (6) at different locations and times. For assimilation
of BC, the gradients with respect to initial conditions,
boundary conditions, anthropogenic emissions, and bio-
mass-burning emissions are calculated (examples in
Figure 5). A negative gradient in Figure 5 indicates that an
increased scaling factor is required for the cost function to
decrease, and vice versa. Boundary conditions and biomass-
burning emissions are represented by their daily gradients,
i.e., their values for each day and grid cell are scaled by one
scaling factor. For anthropogenic emissions, the scaling
factor (for each location and time) is assumed to be composed
of a monthly and a daily contribution.
[31] An iterative optimization procedure based on the

calculated gradients results in reduced cost function and

newly estimated (optimized) scaling factors for different
parameters. Unlike data assimilation with simulated obser-
vations (the so-called identical twin experiment) in which
the cost function can theoretically be reduced to zero, using
actual data generally does not result in dramatic reductions
in the cost function. Daily averaging of the gradients and
applying a single monthly factor for the anthropogenic
emissions further constrain the optimization problem and
contribute to the modest reduction in the cost function.
[32] The objective function in equation (9) is composed

of two parts: one accounting for the distance between the
observations and simulations (prediction error), the other for
the deviation of the optimized parameters from their back-
ground or initial values (assimilation error). The cost
associated with each individual observation or scaled pa-
rameter is, in part, weighted by the uncertainty assigned to
it. In other words, the observations with lower uncertainty
account for a larger fraction of the total cost and are more
aggressively assimilated. Likewise, input parameters with
larger uncertainties are scaled more aggressively, and vice
versa. Here, we assign generic uncertainties of 30, 10, and
20% to the observations made at the VMAP stations,
Gosan, and on board R/V Ron Brown, respectively. These
uncertainties should be regarded as ensemble measures of
the importance ascribed to each data set on the basis of
reliability of the observations and representativeness of the
station. For background values we assign uncertainties of

Figure 3b. Time series of BC observed and simulated
concentrations at VMAP stations of Sado and Rishiri. Gray
lines indicate simulation results without wet removal
processes.

Figure 3a. Time series of BC observed and simulated
concentrations at VMAP stations of Chichijima and
Hachijo. Gray lines indicate simulation results without
wet removal processes.
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300, 2000, 500, and 500% to the initial conditions, bound-
ary conditions, biomass burning, and anthropogenic emis-
sions of BC, respectively. The domain-wide uncertainties
assigned for the emissions are in line with those reported by
Streets et al. [2003a], noting that day- and location-specific
emissions uncertainties are likely to be higher than those
reported for annual and regional estimates. For BB and
anthropogenic emissions these domain-wide values are
adjusted on the basis of the reported regional uncertainties
[Streets et al., 2003a]. Boundary conditions are treated as
highly uncertain, as for each specific day and location they
may be significantly different from the time- and location-
independent background value.
[33] Apart from the uncertainties, the observation- and the

background-driven parts of the objective function can be
weighted by a global factor, i.e., m in equation (9). Such
weight factor, albeit subjective in nature, can be interpreted
as a measure of the strength of the constraints that are
applied to the input parameters. The effect of this global
factor on the overall assimilation is shown in Figure 6,
where the reductions in total square errors or prediction
error (observation-driven portion of the objective function)
are given for different levels of constraints in the back-
ground values. As expected, less constrained cases show
larger reductions. On the other hand, the unconstrained
assimilation also leads to unrealistically aggressive scaling
of the input parameters and therefore larger assimilation
errors (Figure 6). An example of this effect can be seen in
Figure 7, where the monthly scaling factors for anthropo-
genic emissions of BC (for three of the cases in Figure 6 and

the unconstrained assimilation) are shown. For this study a
suitable range of the values for the global weighting factor
can be identified as 25–60 on the basis of Figure 6. Within
this range the choice of the global weighting factor has little
effect on the overall assimilation, as all values result in
reasonable reduction in the simulation errors and realistic
estimates of the input parameters. We use the conservative
end of this range (m = 25) for the final assimilation that
results in approximately 62% reduction in the prediction
error.
[34] Spatial distributions of the optimized scaling factors

for the initial conditions (as well as the base case initial
concentrations) are shown in Figure 8. Scaling initial con-
ditions is likely to have a small effect on the overall cost
function, as after the first few days the effect of the initial
values disappears. However, the initial concentrations can
be important in assimilating the first few days of observa-
tions. As expected, the initial concentrations are mostly
changed within a few days distance (travel time) from the
observation sites, although slight scaling is seen as far as
Myanmar.
[35] The most significant change among the optimized

parameters is applied to the monthly scaling factors for
anthropogenic emissions (Figure 8d), where the magnitudes
of those emissions are scaled as far as western India. The
scaling is more significant in areas of heavy emissions
(Figure 8c), as these areas most significantly influence the
objective function. The main feature of the estimated
emission field is the reduction in southeastern China, and
to lesser extent increased emissions in Japan, northeastern

Figure 4b. Observed and simulated BC concentrations at
Yulin, China, and on board the R/V Ron Brown.

Figure 4a. Observed and simulated BC concentrations at
Gosan and Kwangju, Korea.
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and eastern China. As the adjoints are integrated backward
in time and space from the observation sites, one can
consider the adjoints as an ensemble of all back trajectories
from the observation sites. Therefore significant adjoint
values, gradients, and scaling are more likely to occur in
areas in the vicinity of observation sites.
[36] Scales shown in Figures 8b and 8d are for the first

vertical layer (surface level). Table 2 gives a summary of the
number of cells with significant scaling factors for different
parameters and different vertical layers. Monthly anthropo-
genic emissions and initial conditions scaling factors are
assigned a single value for each grid cell over the month,
but scaling factors for boundary conditions and biomass-
burning emissions are adjusted daily. Overall, only a small
fraction of the grid cells experience significant (larger than
10%) change from the starting point of unit scale factors;
that fraction for initial conditions, boundary conditions,
anthropogenic emissions, and biomass-burning emissions
amounts to 0.75, 1.69, 10.9, and 0.07%, respectively. The
small fraction of the changed values is due to the constraint
that is applied to the optimization. Anthropogenic emissions
and boundary conditions undergo the most significant
scaling. Biomass-burning emissions are sporadic in nature,
and consequently are scaled for the smallest fraction of grid
cells. First layer boundary inflow is less likely to affect the
cells deep inside the domain, and, as expected, boundary
conditions are adjusted more often and more significantly in
the higher layers. The largest scaling for boundary con-
ditions occurs in layers 4–12, corresponding to approxi-
mately 1–3 km altitude. For the anthropogenic emissions
(injected into layers 1–4 only), the first layer is the most
significant. From a domain-wide point of view and on an
average basis, anthropogenic and biomass-burning emis-
sions tend to be reduced as a result of the optimization,
while the initial and boundary conditions are increased.
[37] Apart from the domain-wide averages, a closer look

at the smaller regions in the modeling domain provides
better insight into the behavior of estimated scaling fac-
tors. Figures 9 and 10 show time series of the scaling
factors for the average regional emissions (anthropogenic
and biomass burning) and lateral boundary conditions
(layers 1, 4, 8, and 12). For the boundary conditions, the
effect of the southern boundary is insignificant, as it is
predominantly one of outflow. Even though the western

boundary is very far from the observation sites, it is scaled
at higher altitudes. The eastern and northern boundaries
exert larger effect on the observation sites and have more
significant scaling factors, particularly in the higher layers.
The last period of large scaling factors in the northern
boundary (days 21–25) coincides with the reported wild-
fires in Siberia.
[38] On the country level, anthropogenic scaling factors

(Figure 10) are generally larger than those associated with
biomass-burning emissions. The Philippines and Vietnam/
Thailand/Cambodia/Laos region do not have significantly
modified emissions. The anthropogenic emissions in south-
eastern China are consistently and significantly reduced in
the optimization process, while those for northeastern China
generally exceed unity. For Japan the overall regional
scaling factors for anthropogenic emissions indicate an
increase; however, some areas on the northern island of
Hokkaido show decreased emissions (see Figure 8d).
Emissions in Western India/Bangladesh and Korean
peninsula remain relatively unchanged. Table 3 shows
the total monthly emissions from these subregions. Despite
some significant daily scaling factors, the biomass-burning

Figure 5. Spatial distributions of the gradient of the objective function with respect to (a) monthly
scaling factor for BC anthropogenic emissions and (b) BC initial concentrations. The gradients shown are
calculated from the base simulation results, as they change after each iteration.

Figure 6. Effect of the global weighting factor, m in
equation (6), on the prediction and background components
of cost function. The prediction error is normalized to the
error in the base case simulation. The assimilation error is
normalized to that of the unconstrained assimilation.
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Figure 7. Spatial distributions of the monthly scaling factor for the anthropogenic emissions of BC for
different constraint levels in the optimization process: (a) unconstrained, (b) m = 1000, (c) m = 100, and
(d) m = 10.

Figure 8. Spatial distribution of the (surface-level) scaling factors for BC initial concentrations
(Figure 8b) and monthly BC anthropogenic emissions (Figure 8d). Also shown are the starting (base case)
initial conditions (Figure 8a) and ground-level anthropogenic emissions (Figure 8c).
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emissions do not change significantly as a result of assim-
ilation. The total domain-wide anthropogenic emissions do
not change significantly either; however, some notable
changes at the country/subregional levels are seen. It should
be noted that the anthropogenic scaling factors are specific

to the month of April 2001, and they may reflect an
inaccuracy in the predicted seasonality for the emissions
rather than one in the inventoried annual emissions.
[39] In general, the increased emissions in different parts

of the domain (particularly northeastern and eastern China)

Table 2. Distribution of Significant Scaling Factors in Different Vertical Layersa

Percentage of Cells

<0.5 0.5–0.75 0.75–0.9 1.1–1.5 1.5–2.5 >2.5

Anthropogenic Emissions
Layer 1 4.57 2.17 4.00 3.98 1.76 0.8
Layers 2–4 1.32 1.56 2.69 2.60 0.55 0.13
Layers 5–8 0 0 0 0 0 0
Layers 9–12 0 0 0 0 0 0

Biomass-Burning Emissions
Layer 1 0.01 0.01 0.08 0.03 0 0
Layers 2–4 0.01 0.01 0.06 0.03 0 0
Layers 5–8 0.01 0 0.04 0.02 0 0
Layers 9–12 0 0 0.01 0 0 0

Boundary Conditions
Layer 1 0 0 0.10 0.34 0.11 0
Layers 2–4 0.02 0.06 0.17 0.45 0.16 0.05
Layers 5–8 0.07 0.12 0.29 0.72 0.28 0.12
Layers 9–18 0.20 0.34 0.84 0.82 0.30 0.15

Initial Conditions
Layer 1 0 0.13 0.69 0.70 0.13 0.02
Layers 2–4 0.01 0.17 0.61 0.83 0.14 0.03
Layers 5–8 0.01 0.13 0.25 0.94 0.10 0.02
Layers 9–18 0 0 0 0 0 0

aValues are given in percent.

Figure 9. Time series of the scaling factors for BC lateral boundary concentrations (different vertical
layers). Only grid cells with scaling factors that are significantly (>10%) different than 1 are used in the
averaging.
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Figure 10. Time series of the scaling factors for BC daily emissions in various regions of the
computational domain.
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are in accordance with the findings from other modeling
studies of the emissions of BC and other correlated species
[Carmichael et al., 2003a; Tan et al., 2004; Palmer et al.,
2003; Allen et al., 2004]. Reduced emissions in southeast
China, however, are rather unexpected. Among various
species, CO concentrations are most closely correlated to
those of BC. Heald et al. [2004] use aircraft measurements
and satellite observations during the TRACE-P campaign
for global CO inversion. Their a posteriori estimates for
Asian sources of CO are fairly compatible with those found
in this study for BC.
[40] Apart from the limitations arising from scarcity of

the observations, two potential sources of error can contrib-
ute to the reduced emissions in southeast China. First, the
meteorological model used in this study generally under-

estimates the precipitation events [Uno et al., 2003b]. Such
underpredictions (more importantly, those events missed
altogether by the model) cause model overestimates of BC
concentrations, and consequently lead to inaccurate reduc-
tions in the emissions as a result of the assimilation process.
Second, BC samples used in this study have a cut point of
1 mm or 2.5 mm. Assimilations are carried out on the basis of
the premise that all BC is present in the fine mode, while in
reality some may be mixed with other aerosol species in the
coarse mode. Coarse-mode BC was observed mostly during
dust events [Chuang et al., 2003]. The model accounts for
all BC emissions regardless of size and therefore may
overestimate the sampled BC by the amount of the coarse
mode fraction. Albeit small, these overestimates lead to
emission reductions in the assimilation that are artifacts.

Table 3. Total Anthropogenic and Biomass-Burning Emissions of BC for the Month of April 2001, in Base Case

and Optimized Inventoriesa

Region

Anthropogenic Emissions Biomass-Burning Emissions

Base Case Assimilated Base Case Assimilated

Japan 3.16 5.53 0.04 0.03
Vietnam/Laos/Cambodia/Thailand 7.18 6.62 8.69 8.66
North Korea/South Korea 3.19 2.53 0.11 0.11
Philippines 1.10 1.05 0.15 0.15
Southeastern China 28.51 15.63 1.78 1.40
Northeastern China 7.48 13.02 0.99 0.98
Eastern China/Beijing 18.57 20.80 0.99 0.99
Western India/Bangladesh 16.14 11.40 4.70 4.67
Other 26.54 31.76 14.50 14.47
Total 111.87 108.76 31.95 31.46

aValues are given in gigagrams.

Figure 11a. Assimilated BC concentrations at the VMAP stations.
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[41] The scaling and optimization reduces the cost func-
tion by pushing the simulations closer to the observations,
as shown in Figures 11a and 11b. At different stations and
over the course of assimilation, some of the features of the
observational time series are successfully reproduced in the
simulations. Most notably, model underpredictions at Sado
are well compensated. However, some of the discrepancies
between the observations and modeled concentrations (par-
ticularly at Hachijo and Chichijima) remain relatively un-
affected by the optimization and scaling of the parameters.
Note that compensating for the errors at one location may
drive the simulations further from the observations at
another, as seen in some instances in Figures 11a and 11b
(e.g., at Rishiri). Such cases are more likely to occur at the
VMAP stations, as those observations are assigned higher
uncertainties. As expected the observations at Gosan and on
board R/V Ron Brown are assimilated fairly well, as they
are assigned lower uncertainties.

[42] It is desirable to evaluate the assimilation results with
observations that were not used in the assimilation. We use
the BC measurements on board the C-130 and Twin Otter
aircraft in this regard (Figure 12). In case of the C-130, both
base case and assimilated simulations grossly underpredict
the observations. Moreover, C-130 BC observations are
significantly higher than other comparable observations
made during the campaign [Huebert et al., 2004]. Highest
concentrations are observed during very short sampling
periods (10–30 min), likely indicative of passage through
polluted air masses. Once again, because of the grid size
(80 km) such concentrated plumes are not properly resolved
in the simulations. Even though the simulations significantly
underpredict the observed values on board the C-130, the
assimilated results are in general higher (and therefore
closer to the observations), particularly during the periods
of highest observed BC concentrations. In other words, the
assimilation seems to move the simulation results in the

Figure 11b. Assimilated BC concentrations at Gosan and on board the R/V Ron Brown.
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right direction. The BC measurements on board the Twin
Otter are significantly lower than the C-130 observations
and show better agreement with the simulations. Note that
Twin Otter had three modes for BC sampling, and therefore
overlapping samples were taken during each flight [Mader
et al., 2002]. Here, we use one sample/measurement for
each flight, trying to avoid short sampling periods and
pollution plumes (usually the same). Also, some of the
reported BC concentrations are below the method’s detec-
tion limit; in case of two such observations, the lower value
is used. The assimilated results are generally in better
agreement with the observations. Out of 15 flights, the base
case simulation is within the range of uncertainty for 2
observations, as compared to 9 for assimilated results.
[43] It is important to note that the discrepancies between

the observations and simulations may be caused by inaccu-
racies in parameters that are not included in the inverse
modeling, e.g., different removal processes or uninventoried
emissions. However, the single most plausible source of
inaccuracy (apart from those addressed in the assimilation)
is the meteorological input (in particular the wind fields)
into the simulation. For instance, if the wind field incor-
rectly predicts that an air mass reaching a station does not
cross the boundary or pass over major emission areas, the
optimization will not properly assimilate that specific ob-
servation. For these reasons, the assimilation and the result-
ing scaling factors should be regarded as only trend
indicators rather than strictly as revised values in the base

case emissions inventory (or other input parameters). Fur-
thermore, no uncertainty value or confidence interval has
been assigned to the estimated scaling factors; in the
absence of such consideration for uncertainties, the results
are intended to be treated semiquantitatively.

6. Summary

[44] In this paper, we apply adjoint inverse modeling for
the recovery of BC emissions and initial and boundary
conditions from observations during ACE-Asia. Measure-
ments at four stations in the VMAP network, at Gosan,
South Korea, on board R/V Ron Brown and C-130 and Twin
Otter aircraft, are chosen as the basis for the evaluation of
the forward model, inverse modeling, and verification of the
assimilated results. Optimizing location-dependent scaling
factors for different input parameters through adjoint in-
verse modeling significantly reduces the discrepancy be-
tween the model predictions and observations. After
assimilation, main temporal features at different stations
are successfully reproduced by the model. Among different
stations, assimilation is more successful for Sado, Gosan,
and R/V Ron Brown. The assimilated concentrations show
markedly better agreement with the measurements made on
board the Twin Otter aircraft, and are generally in the
direction of improved agreement with C-130 observations.
[45] The assimilation results show that the northern and

eastern boundary concentrations, particularly those in mid-
altitudes, affect the simulated BC concentrations at the
observation sites. Among the different types of parameters
estimated, BC anthropogenic emissions have the most
significant effect on the overall objective function and
therefore change most during the course of the optimization.
These emissions are also changed more significantly in the
course of assimilation. Total anthropogenic or biomass-
burning BC emissions does not change noticeably as a
result of assimilation. However, important changes to the
anthropogenic BC emissions are seen at the subregional
level; notably emissions increase for Japan and northeastern
China, and sizable decrease for southeastern China. One can
conclude that China in general and its southeastern prov-
inces in particular, are the main areas where further work on
emission inventory is required.
[46] Adjoint inverse modeling is a powerful tool for

providing insight into constraining various underlying
inputs for CTMs. However, reliable and representative data
and wide temporal and spatial coverage of measurements
are essential for conclusiveness of the inversion. Despite the
range of observations during the ACE-Asia field campaign,
and because of the size of the eastern Asia region, the
scarcity of available and applicable BC observations during
ACE-Asia limits the range of conclusions that can be drawn
from inverse modeling of this region. Nevertheless, the
results from inverse modeling contain important informa-
tion (in particular about the emissions inventory) that can
help better understand the BC distributions in the region.

[47] Acknowledgment. This work was supported by National Sci-
ence Foundation award NSF ITR AP&IM 0205198.
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