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An adjoint model for the internationally used Community
Multiscale Air Quality (CMAQ) modeling platform of the U.S.
EPA is developed. The adjoint version for CMAQ (CMAQ-
ADJ) provides the user community with forward (decoupled
direct method or DDM) and backward (adjoint) sensitivity
analysis capabilities. Current implementation is for gas-
phase processes. Discrete adjoints are implemented for all
processes with the exception of horizontal advection, for
which, because of inherent discontinuities in the advection
scheme, the continuous approach is superior. The
adjoint of chemistry is constructed by interfacing CMAQ
with the kinetic pre-processor, which provides for increased
flexibility in the choice of chemical solver and facilitates
the implementation of new chemical mechanisms. The adjoint
implementation is evaluated both on a process-by-
process basis and for the full model. In general, adjoint
results show good agreement with brute-force and DDM
sensitivities. As expected for a continuous adjoint
implementation in a nonlinear scheme, the agreement is
not perfect for horizontal transport. Sensitivities of various
air quality, public health, and environmental metrics with
respect to emissions are calculated using the adjoint method.
In order to show applicability to regional climate studies,
as an example, the sensitivities of these metrics with respect
to local temperatures are calculated.

Introduction
Three-dimensional (3-D) atmospheric chemical transport
models (CTMs) are used to predict spatial and temporal
distributions of airborne pollutants. In recent years, they
have been increasingly modified to provide information, not
only about concentrations, but also sensitivities of atmo-
spheric levels with respect to various parameters. Owing in
part to increased computational resources, sensitivity analysis

has received more attention and new methods have been
developed to more efficiently calculate sensitivity coefficients
(derivatives) of model outputs with respect to various inputs.
Sensitivity information provided by atmospheric models can
be used in various applications such as the design of optimal
pollution-control strategies, inverse modeling and model
parameter estimation, and air quality forecasting and data
assimilation.

Local sensitivity analysis techniques can be divided into
two general categories of forward and backward methods.
In the often-used forward method, sensitivities are propa-
gated forward (along the model trajectories) from the
perturbed source into various receptors/outputs (1-3). By
nature, the methods in this category are efficient in simul-
taneously providing sensitivity information about all recep-
tors with respect to a few specific parameters (4-7). In
backward (adjoint) sensitivity analysis, the perturbation is
made at the receptor end and is propagated backward in
time and space through an auxiliary set of equations. As a
result, adjoint sensitivity analysis provides simultaneous
sensitivity information about specific receptors with respect
to all sources and parameters.

Adjoint sensitivity analysis in its current form can be traced
back to the early stages of nuclear reactor physics in 1940s
and 1950s (comprehensive views on the history of the adjoint
method for sensitivity analysis are given in 8, 9). Adjoint
sensitivity analysis was later applied to various environmental
problems (10-15). In particular, it has been used extensively
in meteorology and oceanography for various applications
such as sensitivity analysis (16, 17), variational data as-
similation (18-20), parameter estimation (21), etc. In the
past decade, adjoint analysis has been extended to 3-D CTMs.
Elbern et al. (22-25) developed an adjoint for the EURAD
CTM and performed chemical data assimilation and inverse
modeling of emissions. Vukicevic and Hess (26) implemented
the adjoint method in the tracer model HANK and performed
sensitivity analysis with respect to various parameters. More
recently, adjoint versions for other global or regional CTMs
have been developed for various applications such as inverse
modeling and sensitivity analysis; these include regional
models CHIMERE (27-29), STEM (30-32), Polair (33-34),
CIT (35, 36), and DRAIS (37) and global models IMAGES (38,
39), TM4 (40), and GEOS-Chem (41). However, among the
regional and air quality models for which an adjoint version
is available, none is widely used in the modeling community.
In this work, we develop an adjoint for the Community
Multiscale Air Quality (CMAQ) model of the U.S. EPA (42,
43). CMAQ is generally considered as the most widely used
regional air quality model in the U.S. and across the world.
Furthermore, we demonstrate how the adjoint model can be
used for sensitivity analysis of various air quality and/or
environmental metrics. The adjoint method, in tandem with
the decoupled direct method (DDM), provides the users of
CMAQ with a powerful set of analysis tools that can tackle
a wide spectrum of problems.

Development of the Adjoint. Atmospheric CTMs are
based on the atmospheric diffusion equation (44, 45)

where Ci is the mixing ratio of species i (a function of 3-D
space and time), u is the vector wind field, K is the diffusivity
tensor, Ei represents elevated emissions, F is the air density,
and Ri is the net chemical reaction rate for the species.
Equation 1 is solved subject to specified initial and boundary
conditions. In operator notation, the model operator matrix,
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M, maps the input parameters vector r (including initial
conditions) into the output domain

where C is the concentration vector at the end of the
integration period (tF). For most common applications,
principal input parameters are initial and boundary con-
centrations and emission rates, but they may also include
other parameters such as chemical reaction rate constants,
dry deposition velocities, etc. Equation 1 and the operator
M can be referred to as the forward model and operator,
respectively. Note that owing to nonlinearity in gas-phase
chemistry, M is a nonlinear operator. Transport processes
(horizontal and vertical advection and diffusion) in eq 1, on
the other hand, are physically linear processes, although these
terms may be integrated numerically by nonlinear schemes
in the discretized form.

A perturbation in the input parameters (e.g., emissions
δEi) in eq 1 results in a perturbation in each predicted
concentration, δCi, which is governed by

where Fi is the ith row of the Jacobian of the chemical reaction
rates (Fij ) ∂Ri/∂Cj). Equation 3 can be represented in operator
form as

where L is the Jacobian of the model operator at the base
case conditions. Equations 3 and 4 represent the linearized
form of the forward model/operator, and are referred to as
the tangent linear model (TLM) and operators, respectively.
Note that eq 3 is also equivalent to the system of sensitivity
equations solved in the DDM (2, 3) for sensitivity analysis;
TLM and DDM can be used interchangeably to refer to the
forward method for calculation of first-order local (in the
sense of a small perturbation) sensitivity coefficients, e.g.,
δCi/δEj.

If one defines a scalar cost function of the concentration
field computed by the model (forms of the cost function for
problems of interest in the application of CMAQ are discussed
in Section 4) as

where ω is the generalized spatial coordinate, then an adjoint
model to the TLM/DDM can be derived by applying Lagrange
multipliers and integration by parts to eq 3 and its associated
initial and boundary conditions

where Fi
T is the ith row of the transposed Jacobian (or the

transpose of the ith column of the original Jacobian) of the
chemical reaction rates, λi is the adjoint variable for species
i such that at each time and location λi ) ∂J/∂Ci, and æi is the
forcing term for the adjoint equations

Details of the derivation of adjoint equations and related
initial and boundary conditions for a CTM can be found in
Elbern et al., 2000 (24), Sandu et al. 2005 (30), Hakimi et al.,
2005 (31), Martien et al., 2006 (35), and Henze et al., 2007
(41). Equation 6 is challenging to solve owing to the

concentration-dependent cost function and the associated
forcing term, æi. The negative sign preceding the transient
term in eq 6 indicates that the adjoint equations are integrated
backward in time. Calculation of the Jacobian of the reaction
rates in eqs 3 and 6 requires values of the state vector
(concentrations). For TLM/DDM calculations, this is achieved
easily, as the integrations for the TLM/DDM and forward
models may be advanced together. For adjoint calculations,
however, concentrations need to be stored (so-called check-
pointed) in forward simulations and then used for backward
integration. Checkpointing is also necessary for any other
nonlinear process that is simulated in the backward mode.

The TLM/DDM equations are driven/forced by perturba-
tions in the inputs/sources (e.g., εE in eq 3). These perturba-
tions are then propagated forward in time to produce a field
of sensitivity coefficients with respect to the perturbed input/
source parameter. On the other hand, the forcing terms for
the adjoint equations are perturbations in a scalar, receptor-
based cost function (i.e., æi in eq 6) that are propagated
backward in time. Therefore, integration of the adjoint
equations results in a field of sensitivity coefficients of the
cost function with respect to model inputs. TLM/DDM is a
source-based forward sensitivity method suitable for cal-
culating sensitivities of a large number of outputs with respect
to a few inputs. Adjoint sensitivity analysis, on the other
hand, is a receptor-based, backward method that is most
efficient in calculating the sensitivities of a few outputs with
respect to numerous inputs. The duality in the range of
efficiency and applicability for forward (TLM/DDM) and
backward (adjoint) sensitivity analysis methods makes them
complementary approaches for addressing a wide spectrum
of problems.

The adjoint of a linear operator L can also be defined
using the following duality principle

where L* is the adjoint operator and 〈.,.〉n denotes the inner
product in Rn. Applying eq 8 to the TLM/DDM model,

Or

which can be used for verification of the adjoint operator
from a validated TLM/DDM model (46).

TABLE 1. Comparison of Computational Times for the Forward,
DDM, and Adjoint Models with Various Chemical Solvers at
the Default/Recommended Settings

normalized computational times b

solvera forward modelc DDMd,e adjointd

CMAQ-EBI 1.00
CMAQ-ROS3 2.10
CMAQ-SMVGEAR 3.69
KPP-ROS2 1.59 1.88 2.02
KPP-ROS3 1.08 1.96 2.02
KPP-ROS4 1.18 2.11 2.11
KPP-RODAS3 0.96 2.12 2.09
KPP-RODAS4 1.18 2.39 2.18
KPP-RADAU-2A 2.08 7.81 7.87
KPP-LOBATTO 2.66 7.93 7.25
KPP-GAUSS 2.66 8.13 5.41
KPP-RADAU-1A 1.99 7.60 7.96

a For description of solvers, see refs 55-58. b All simulations are
carried out sequentially for 24 hours, on 64 bit, 2.0 GHz dual-core Opteron
processors. c Values are normalized to forward simulation with EBI
solver. d Values are normalized to the forward simulation with the same
solver. e Values include the time required for concentration integrations.

〈u,Lv〉n ) 〈L*u,v〉n (8)

〈δC,Lδr〉 ) 〈L*δC,δr〉 (9)
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Two approaches exist for integration of the adjoint
equations. In the continuous approach, the adjoint eqs 6 are
discretized and solved numerically. Alternatively, discrete
adjoint models may be developed directly from the discretized
DDM model. The two approaches in general produce
different results, as adjoint and discretization operations are
not commutable (47). Note that the same distinction can be
made between continuous and discrete approaches for the
development of TLM/DDM models.

In eqs 2 and 4, it is assumed that the evolution of
concentrations or sensitivities is described by a single
operator. In practice, CTMs use an operator splitting scheme,
and they also integrate the governing equations over multiple
time steps. The overall operator can be considered as the
composition of all internal steps. In other words, for a model
of N time steps and m processes at each step,

Implementation of the Adjoint (CMAQ-ADJ)
In this work, adjoint (and DDM) methods are implemented
in CMAQ version 4.5.1 for gas-phase processes. (For iden-
tification proposes, this code is referred to as CMAQ-ADJ.)
As there are no significant changes in these processes in the
recently released version 4.6, the adjoint model implemen-
tation can be equally applied to CMAQ 4.6. We use a hybrid
approach in development of the adjoint (and DDM) model-
(s), wherein discrete adjoints for chemistry, diffusion, and
vertical advection and continuous adjoints for horizontal
advection are employed. As explained later, these choices
are made based on accuracy of the adjoints as well as their
physical significance.

A variation of DDM (4, 7) has been previously imple-
mented in CMAQ (48). Implementation of DDM is briefly
addressed to complement the discussion of adjoint imple-
mentation. The previous implementation of DDM in CMAQ
employed a continuous approach. In the present DDM
implementation, a discrete approach for chemistry integra-
tion is used to enhance accuracy (see discussion on the
chemistry adjoint below). Complete validation of the DDM
results is not shown here, but in general they are in good
agreement with brute-force (BF) finite difference calculations
(Figure 1). Note that minor disagreements between DDM
and BF results in Figure 1 are primarily a result of the use
of a continuous approach for calculating DDM sensitivities

of horizontal advection. The use of a discrete approach for
horizontal advection will enhance agreement between BF
and DDM but may produce physically inconsistent results
(see discussion on horizontal advection below). The same
problem will occur in vertical advection for earlier versions
of CMAQ where a nonlinear scheme was employed.

The validation of DDM results with BF sensitivities is a
rather straightforward task, as they both provide forward
sensitivity fields. Validation of adjoint results cannot be
achieved as easily. For each pair of forward (DDM or BF) and
backward (adjoint) sensitivity simulations, there is only one
point-of-comparison available for validation purposes. De-
pending on the definition of the forward sensitivity parameter
(perturbed source) and adjoint cost function (perturbed
receptor), the point-of-comparison can be the sensitivity of
a single output or an integrated concentration metric to
changes in a single input or collective change to a set of
inputs. Regardless of the source and receptor metrics
involved, available points-of-comparison between each pair
of forward and backward sensitivity fields is reduced to a
single scalar. Therefore, a complete validation of adjoint
variables for all locations, times, and species is pragmatically
infeasible. In the following sections, we describe the methods
used for the implementation of adjoint analysis in CMAQ
and then for validation purposes we will introduce reduced
models where points-of-comparison between forward and
backward sensitivity fields are increased. For example, for
chemistry validation, forward and backward simulations are
carried out only for chemistry (transport processes turned
off). Therefore, the 3-D model can be considered as an
ensemble of numerous box models, each of which provides
a point-of-comparison. The reduced chemistry-only model
will then provide a 3-D (in space only) field of points-of-
comparison between forward and backward sensitivity fields.

Chemistry Adjoint. In order to implement forward and
backward sensitivity analysis capabilities, the Kinetic Pre-
Processor (KPP), version 2.2 (49, 50), has been integrated into
CMAQ. KPP can be efficiently used to generate required
subroutines for any chemical mechanism. Recent versions
of KPP have been extended to include DDM and adjoint
sensitivity analysis capabilities (51-53). KPP significantly
enhances the flexibility of CMAQ for using new or modified
chemical mechanisms. Chemical solvers offered in KPP are
generic and independent of mechanism, and therefore,
migration to a new chemistry can be achieved seamlessly.
The latest version of KPP offers a choice from multiple
Rosenbrock (54, 55) and Runge-Kutta solvers (including
families of fully implicit three-stage and singly diagonally
implicit Runge-Kutta methods, see 56), where within each
family various solvers differ in accuracy and stability proper-
ties. KPP generates all required subroutines for continuous

FIGURE 1. Comparison between BF (left) and DDM (middle) seminormalized sensitivities of ozone with respect to initial ozone concentration
after 6 h of simulation. BF sensitivities are central difference approximations unless otherwise specified.
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and discrete DDM and adjoint sensitivity calculations. In
general, KPP solvers compare favorably with CMAQ’s SM-
VGEAR (57), ROS3, and Euler backward iterative (EBI) (58)
solvers. At the default tolerance values, CPU time requirement
for KPP’s Rosenbrock solvers are comparable with EBI and
lower than CMAQ’s SMVGEAR and ROS3 (Table 1) solvers.
Work-precision diagrams (55) for model simulations with
original CMAQ solvers as well as those of KPP are shown in
Figure 2. These diagrams suggest that KPP’s Rosenbrock
solvers provide fairly accurate solutions at relatively low
computational cost and outperform original CMAQ solvers.

State vectors (concentrations) are checkpointed at syn-
chronization (chemistry) time steps into netCDF files.
Currently, checkpointing is available only for fixed time steps
in each simulation day. Therefore, predetermined synchro-
nization steps are set for each day. Checkpoints are written
during the forward simulations. During the backward
simulations, checkpointed concentrations are read at the
beginning of each synchronization time step. The required
checkpoints at the internal chemistry time steps are recal-
culated by forward integration of the concentrations for the
synchronization time step (i.e., two-level checkpointing, see
30, 59). Calculated chemistry-only adjoint sensitivities are in
close agreement with BF values (Figure 3).

Horizontal Advection Adjoint. CMAQ version 4.5 uses
the piecewise parabolic method (60) to integrate the flux
form of the one-dimensional horizontal advection equation

where η is the mass-based concentration vector (η ) FC,
where F is air density). If total mass continuity holds for the
advection process, then eq 12 is equivalent to

The application of a mass-based adjoint variable (for
conservation) to eq 13 results in the following one-
dimensional adjoint advection equation

where λ and λm are mixing ratio and mass-based adjoint
variables (λm ) λ/F). Therefore, the one-dimensional adjoint

FIGURE 2. Work-precision diagrams for day-long simulations with various CMAQ (black) and KPP solvers (Rosenbrock in red and
Runge-Kutta in blue). Significant digit accuracy (SDA) for each species is defined as SDAi ) -log(RMSREi), where RMSRE is the root-mean
square of relative error in comparison with a reference solution. Diagrams are shown for the overall SDA (minimum across all species).
Simulations with default/recommended settings are indicated by enlarged, green markers. For this application, most Rosenbrock solvers
fall in the desirable performance region.

FIGURE 3. Comparison of adjoint and BF sensitivities of final ozone concentration with respect to initial NO concentration; chemistry-only
simulations are carried out for 6 h.
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advection equations solved in the continuous adjoint imple-
mentation are

where all Dirichlet boundary conditions for the adjoints are
set to zero. In forward simulations, mixing ratios are
“coupled” with (multiplied by) densities (i.e., they are
converted to mass-based concentrations) for advection
processes. Subsequently, after the completion of each
advection step, mass-based concentrations are “decoupled”
from (divided by) densities and converted back to mixing
ratios. Unlike the forward calculations, in the backward
simulation, the conversion of mixing ratio to mass-based
adjoints is accomplished by division by densities (see Table
2 for an operational scheme of the forward and backward
simulations).

Figure 4 shows comparisons between adjoint and BF
horizontal advection sensitivities. The simulations for Figure
4 include only horizontal advection in the x direction, where
the figure shows an x cross section (for 23 vertical layers) of
sensitivities of ozone at the final time step in the 20th column
of the domain with respect to initial ozone concentrations
in the 20th column. By considering advection in the x
direction as the sole process, a two-dimensional field of point-
of-comparison between forward and backward sensitivity
fields is available for visualization. BF sensitivities are
calculated by various changes to the initial ozone at the 20th
column. As can be seen, the general features of the advected
fields are similar, but there are noticeable differences between
the forward and backward fields. The adjoint field is smoother
while negative sensitivities in the BF field are physically
meaningless; negative sensitivities represent only numerical
noise in the BF fields. The behavior seen in Figure 4 is
consistent with previous studies of the adjoints of nonlinear
advection schemes (41, 61, 62). Also note that BF fields are
inconsistent among themselves (for various perturbations)
and deviate further from the backward field for smaller
perturbations. This indicates that differences between BF
and adjoint fields are not a result of nonlinearities in the
advection scheme, as they increase with decreasing pertur-
bations. These differences instead result from discontinuity
and nondifferentiability in the forward scheme that causes
irrecoverable inconsistencies between BF simulations (63).
If a discrete adjoint approach is employed in these simula-
tions, the resulting adjoint field would resemble a noisy BF
sensitivity field. As a result of these inconsistencies, we
conclude that for the current nonlinear advection scheme in
CMAQ, continuous adjoint implementation of the horizontal
advection scheme is superior to discrete implementa-
tion.

Vertical Advection Adjoint. CMAQ uses an upwind first-
order finite difference scheme for solving the vertical

advection equation

In CMAQ version 4.5, vertical advection is used as a mass
conservation step. During horizontal advection, air densities
are also advected alongside concentrations. In each ensuing
vertical advection step, the vertical wind profile is calculated
such that transported air density for that time step at each
level matches meteorological densities from MM5. The
calculated vertical wind profile is then applied to all species.
It is necessary to use a vertical wind profile during backward
calculations similar to that used in the forward simulations.
Therefore, either transported air densities after each hori-
zontal advection step or the calculated vertical wind profile
at each vertical advection step during forward simulations
need to be checkpointed.

Similar to horizontal advection, the corresponding adjoint
equation for vertical advection is

The same numerical subroutine may be used with the reverse
vertical wind profile (continuous adjoint). In our imple-
mentation, a discrete adjoint is developed for the linear
scheme used in vertical advection. Applying the adjoint
(transpose) of the linear operator above (discrete adjoint)
yields different results than using the forward operator with
the reverse wind profile (continuous adjoint). The discrete
adjoint provides results that are more consistent with BF
sensitivities (Figure 5). Note that in previous versions of
CMAQ (before version 4.5) where a nonlinear scheme is used
for vertical advection, a continuous approach would be
preferable.

Vertical Diffusion Adjoint. CMAQ provides an option for
species emissions to be processed during chemistry or vertical
diffusion integrations. In the present adjoint implementation,
emissions are injected during vertical diffusion for which
the following equation

is solved with the corresponding adjoint equation as

Deposition velocities are included in the first layer as part
of the boundary conditions. The same numerical scheme
can be used for adjoint integrations by excluding only the
emissions. Equation 20 is evolved to the next time step by
applying the following operator

where LHS and RHS are tridiagonal left-hand side and right-
hand side matrices in a Crank-Nicholson discretization,
respectively. Therefore, the discrete adjoint operator is

For vertical diffusion, discrete and continuous adjoints
produce nearly identical results. We use the continuous

TABLE 2. Forward and Backward Simulation Schemes in CMAQ
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approach in the present implementation. The gradients of
the cost function with respect to emissions can be calculated
from the adjoint variables during backward integrations:

Note that the required factorization in eq 23 is already
carried out for continuous adjoint integration. Therefore,
calculation of the gradient of the cost function with respect
to emissions of each species is accomplished by the minimal
cost of one additional back-substitution in the modified
tridiagonal solver used in the adjoint integration.

Figure 6 compares BF and adjoint sensitivity fields for
sensitivities of ozone at the surface with respect to surface
NO emissions when simulations include only chemistry and
vertical diffusion. As the accuracy of chemistry adjoints has
been previously verified, the agreement shown in Figure 6
serves as validation of both the adjoint of vertical diffusion
and calculation of emission gradients.

Horizontal Diffusion Adjoint. In CMAQ, species under-
go horizontal diffusion according to the following equa-
tion

FIGURE 4. Comparison of various BF with the adjoint sensitivity of ozone at the 20th column with respect to initial ozone at the 20th column.
Only horizontal advection in the x direction is included in the simulations. The DDM sensitivity shows reasonable agreement with that
of the adjoint.

FIGURE 5. Simulations with only vertical advection for calculation of the sensitivities of surface ozone with respect to the initial surface
ozone.

FIGURE 6. Simulations with only chemistry and vertical diffusion; normalized sensitivities of surface ozone with respect to the surface
emissions of NO.
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the continuous adjoint of which is

The horizontal diffusion operator is symmetrical and,
therefore, self-adjoint. As a result, (a) the same numerical
scheme can be used to horizontally diffuse concentrations
and adjoints in forward and backward simulations, and (b)
continuous and discrete horizontal diffusion adjoints are
identical. We use the same subroutine for horizontal diffusion
of adjoints with an internal “decoupling” from (division by)
densities (see Table 2). Adjoint and BF sensitivity fields show
good agreement in Figure 7 where only horizontal diffusion
in one direction is included in the simulations and sensitivities
of final ozone at the 21st x cross section with respect to initial
ozone at the 20th column are shown.

Overall Implementation. In the present implementation,
forward and backward (and DDM) models are run as separate,
independent models. For executing adjoint and DDM models,
one first needs to once carry out the forward simulation and
store the generated checkpoint files. For subsequent adjoint
(and DDM) simulations, however, execution of the forward
model is not required, as the same checkpoint files can be
re-used. This leads to significant computational savings when
multiple backward simulations are performed. In general,
the order in which processes are called during the backward
simulation is reverse of that in the forward simulation (Table
2). As only chemistry requires knowledge of concentrations
in the current implementation, checkpoints are written and
read before each chemistry call. However, transported air
densities are written to checkpoint files after each horizontal
advection scheme in the forward mode and read before each
vertical advection scheme in the backward simulation.

In summary, validation of full adjoint results (including
all processes) with forward sensitivity fields (BF or DDM) is
possible only for a few sensitivity coefficients. Validation of
the adjoint of isolated processes through comparison with
forward sensitivity fields can be carried out for a larger
number of points-of-comparison (Figures 3-7) and provides
for a more robust verification procedure. Full model results
are also in good agreement with BF sensitivities as shown in
Figure 8 for few select points and types of sensitivity
coefficients.

Computational Efficiency. The original CMAQ provides
three options for chemical solvers in Euler backward iterative
(EBI), a vectorized Gear solver (SMVGEAR), and ROS3 from
the family of Rosenbrock solvers. With the implementation
of KPP, users of CMAQ-ADJ have access to five Rosenbrock
and four Runge-Kutta solvers that differ in the order of
integration method. Unlike the original implementation of
ROS3 in CMAQ, KPP implementation does not employ cell
blocking for improved performance on vectorized machines.
Table 1 shows the comparison of computational times for
forward, DDM, and adjoint models with various solvers. All
tests are carried out for a 1 day simulation for a 45 × 46 ×
18 computational domain with 36 km horizontal resolution.
In these simulations, the CB-IV chemical mechanism is used.
Computational times for forward runs are normalized to the
simulation time for the model with CMAQ’s EBI solver.
Overall, the EBI solver provides the fast simulation times;
however, it has the lowest accuracy. For similar tolerance
limits, all other solvers show similar good accuracy. Rosen-
brock solvers, however, outperform other groups in these
tests that are carried out on nonvectorized machines (Figure
2). Also shown in Table 1 are the relative costs of forward and
backward sensitivity calculation. Backward calculations

FIGURE 7. Simulations with only horizontal diffusion in the x direction for the calculation of ozone sensitivities at the 21st column with
respect to initial ozone at the 20th column.

FIGURE 8. Full model simulations; sensitivities of surface ozone with respect to surface NO initial concentrations (left) and emissions
(right) for selected locations. Values are shown in comparison to the one-on-one lines.
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require at least twice the computational time as forward
calculations (significantly more for Runge-Kutta solvers);
as in the two-level checkpointing scheme, a second-level
forward integration is performed for retrieval of concentra-
tions at the internal time steps in between checkpoint
intervals. Finally, note that the relative costs in Table 1 are
for a single receptor/cost function (in adjoint mode) or
source/sensitivity parameter (in DDM mode). When sensi-
tivities for multiple receptors or sources are calculated
simultaneously, the overall cost per receptor/source for both
DDM and adjoint simulation is significantly reduced. This
is a result of the shared computational cost in matrix
factorization among various receptors/sources. The potential

saving is more substantial for large chemical mechanisms
where chemistry integration is a larger contributor to the
overall computational cost.

Applications in Receptor-Based Sensitivity Analysis
The adjoint method has been used widely for variational
data assimilations and inverse modeling. In these applica-
tions, the cost function can be defined generally as

FIGURE 9. Spatial distribution of the cost function for population exposure (left) and associated gradients with respect to NOx emissions
(right). Values are normalized to the total cost function and presented in percent. The exposure threshold is 60 ppb.

FIGURE 10. Spatial distribution of the cost function for the W-126 metric of vegetation exposure from ozone (left) and associated gradients
with respect to NOx emissions (right). Values are normalized to the total cost function and presented in percent.

FIGURE 11. Temperature gradients of the population exposure to ozone (left) and the W-126 metric (right) with respect to local temperatures.
Values are integrated for the duration of the episode, normalized to the total cost function, and presented in percent.

J ) JObservations + JBackground

) 1
2

(C - Cobs)
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2
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where Cobs is a set of observed concentrations, rb is the vector
of a priori (background or initial guess) estimate of inputs,
and where O and B are observation and background error
covariance matrices. The cost function consists of two parts:
the first part is a measure of model prediction errors, and the
second part is a penalty for deviation from a priori estimates
of model inputs. In typical applications, the adjoint method
is used to calculate the gradients of the cost function with
respect to initial concentrations (for data assimilation
applications) or model parameters such as emissions (for
inverse modeling applications). These gradients are then used
in an iterative optimization algorithm in order to minimize
the cost function, which reduces the mismatch between
model predictions and observations by adjusting the inputs
(e.g., emissions) within a reasonable range. Variational
methods provide an important approach for constraining
emissions of various species on a spatially resolved basis
(36).

The adjoint method is a powerful tool for receptor-
oriented sensitivity analysis. As a receptor-based method,
adjoint sensitivity analysis is particularly suitable for ad-
dressing policy problems. Hakami et al. (64) used the adjoint
of a CTM for ozone nonattainment sensitivity analysis over
the continental United States. They demonstrated that the
adjoint method is a powerful framework for formal analysis
of interstate, trans-boundary, and intercontinental transport
of pollution. Similar approach can be taken to analyze local
nonattainment. Here, we briefly describe a few other potential
applications for adjoint sensitivity analysis at regional scales
using the adjoint of CMAQ. These applications differ only in
the definition of the cost function.

Population Exposure Analysis. If the cost function is
defined as a population exposure metric, then the resulting
sensitivities identify the most influential parameters (emis-
sions) affecting population exposure

where γ represents an exposure threshold and P is the
population at each location. Note that eq 26 can be extended
to include dose-response relationships for one or multiple
pollutants to represent public health risks. As a target-based
method, adjoint analysis can identify the most influential
emission sources that contribute to the overall exposure/
risk metric (e.g., Figure 9). As expected, this definition of the
cost function emphasizes areas with large population densi-
ties.

Environmental Exposure. A cost function similar to that
in eq 26 can be used to quantify environmental stress resulting
from increased pollution levels. For example, an environ-
mental exposure metric based on the W-126 function can be
defined to quantify the impact of increased ozone on crops
and vegetation (65, 66),

where C03 is the ozone mixing ratio in ppm. With the use of
the above equation as the cost function in adjoint analysis,
corresponding (emission) gradients can be calculated (Figure
10). Areas of significant gradients (right panel) indicate
sources where emission control can result in largest reduc-
tions in the cost function (left panel). The adjoint method
affords users the flexibility to combine environmental and
public health metrics in a single cost function for integrated
analysis of air pollution effects.

Effect of Temperature Variation on Air Pollution Levels.
In a manner similar to that for the calculation of emission

gradients, the sensitivity of the cost function with respect to
changes in temperature can be calculated by

As written, eq 28 describes only the effect of temperature on
the cost function via chemistry. Changes in temperatures
will also affect biogenic (and anthropogenic) emissions. The
results of applying eq 28 in the adjoint analysis for population
and environmental exposures above (eqs 26 and 27) are
shown in Figure 11. It is interesting that temperature gradients
show significant spatial distributions, something that is
possible to capture only in a receptor-oriented method, i.e.,
adjoint sensitivity analysis. Spatial distributions such as those
in Figure 11 can be used in conjunction with results from
regional climate studies to formally quantify the impact of
future climate conditions on regional air quality. These
gradients can also be used to quantify contributions to the
uncertainties in future (or current) air quality from uncer-
tainty/variability in regional temperatures.
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