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Abstract

The task of providing an optimal analysis of the state of the atmosphere requires the development of efficient com-
putational tools that facilitate an efficient integration of observational data into models. In a variational approach the
data assimilation problem is posed as a minimization problem, which requires the sensitivity (derivatives) of a cost func-
tional with respect to problem parameters. The direct decoupled method has been extensively applied for sensitivity
studies of air pollution. Adjoint sensitivity is a complementary approach which efficiently calculates the derivatives
of a functional with respect to a large number of parameters. In this paper, we discuss the mathematical foundations
of the adjoint sensitivity method applied to air pollution models, and present a complete set of computational tools for
performing three-dimensional adjoint sensitivity studies. Numerical examples show that three-dimensional adjoint sen-
sitivity analysis provides information on influence areas, which cannot be obtained solely by an inverse analysis of the
meteorological fields. Several illustrative data assimilation results in a twin experiments framework, as well as the assim-
ilation of a real data set are also presented.
© 2004 Published by Elsevier Inc.

Keywords: Chemical transport models; Adjoint models; Sensitivity analysis; Data assimilation

1. Introduction

Our ability to anticipate and manage changes in atmospheric pollutant concentrations relies on an accu-
rate representation of the chemical state of the atmosphere. As our fundamental understanding of atmos-
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pheric chemistry advances, novel computational tools are needed to integrate observational data and mod-
els together to provide the best, physically consistent estimate of the evolving chemical state of the atmos-
phere. Such an analysis state better defines the spatial and temporal fields of key chemical components in
relation to their sources and sinks. This information is critical in designing cost-effective emission control
strategies for improved air quality, for the interpretation of observational data such as those obtained dur-
ing intensive field campaigns, and to the execution of air-quality forecasting.

Kalman filter techniques [31] provide a stochastic approach to the data assimilation problem. The filter-
ing theory is described in Jazwinski [30] and the applicability to atmospheric modeling is presented in the
work of Daley [34]. A Kalman filter approach was used by Menard et al. [38] to assimilate methane obser-
vations into a stratospheric tracer model. The computational burden associated to the filtering process has
prevented the implementation of the full Kalman filter for large-scale transport-chemistry models. Ensem-
ble Kalman filter techniques [20,27] may be used to facilitate the practical implementation as shown by van
Loon et al. [48].

Variational methods (3D-Var, 4D-Var) provide an optimal control approach to the data assimilation
problem. Four-dimensional variational (4D-Var) data assimilation allows the optimal combination of three
sources of information: an a priori (background) estimate of the state of the atmosphere; knowledge about
the physical and chemical processes that govern the evolution of pollutant fields, as captured in the model
(CTM); and observations of some of the state variables. The optimal analysis state is obtained through a
minimization process to provide the best fit to the background estimate and to all observational data (space
and time distributed) available in the assimilation window. The use of adjoint modeling to evaluate the gra-
dient of the objective functional makes feasible the implementation of the 4D-Var data assimilation for
large-scale atmospheric models. The practical applicability of the 4D-Var typically requires an accurate
model representation of the atmospheric dynamics. Under the perfect model assumption and with valid
covariance matrices, the Hessian of the minimized cost function equals the inverse of the covariance matrix
of the analysis error. The optimality of the 4D-Var and its relationship with the Kalman filter is further
discussed in [35].

The direct decoupled method has been extensively used for sensitivity studies in three dimensional (3D)
atmospheric chemistry transport simulations [25,51,52]. Direct sensitivity analysis via (forward mode) auto-
matic differentiation was also employed in the context of photochemical transport models [5,26,29]. Adjoint
sensitivity is a complementary approach which efficiently calculates the derivatives of a functional with re-
spect to a large number of parameters.

In this paper, we present the mathematical theory of adjoint sensitivity analysis applied to three dimen-
sional atmospheric transport and chemistry models. We discuss the computational tools developed and use
them to build the adjoint of a comprehensive 3D air quality model. This discussion includes parallelization
and performance of 3D adjoints. The use of adjoints for sensitivity analysis and for data assimilation prob-
lems is illustrated using numerical simulations of air pollution in East Asia.

The paper is organized as follows. Section 2 gives an overview of previous work in chemical data assim-
ilation. In Section 3, we review the mathematical theory of adjoint sensitivity analysis applied to air quality
modeling. Specific algorithmic details of the adjoint of Stem-III chemical transport model are presented in
Section 4, while Section 5 discusses implementation aspects. Numerical results for the simulation of East
Asia are shown in Section 6. Conclusions and future research directions are given in Section 7.

2. Previous 4D-Var work
The implementation of the four-dimensional variational (4D-Var) data assimilation for large-scale

atmospheric models relies on the adjoint modeling to provide the gradient of the objective functional.
Mathematical foundations of the adjoint sensitivity for nonlinear dynamical systems are presented by Cac-
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uci [3,4] and Marchuk et al. [36,37]. Early applications of the 4D-Var to chemical data assimilation were
presented by Fisher and Lary [21] for a stratospheric photochemical box model with trajectories. A similar
model was used later by Khattatov et al. [32] to implement both the 4D-Var and a Kalman filter method. A
tropospheric gas-phase box model based on the chemical mechanism RADM?2 was used by Elbern et al.
[16] to analyze the applicability of the 4D-Var approach to tropospheric chemical data assimilation. Menut
et al. [33] and Vautard et al. [47] use the adjoint approach for sensitivity studies in atmospheric chemistry
modeling.

In the past few years variational methods have been successfully used in data assimilation for compre-
hensive three-dimensional atmospheric chemistry models [14,19]. The work of Wang et al. [S0] provides a
review of the adjoint methodology and data assimilation applications to atmospheric chemistry.

The inverse problem of data assimilation of tropospheric gas observations into a comprehensive 3-di-
mensional Eulerian CTM is researched by Elbern et al. [14]. The authors use the discrete parallel adjoint
of the European Air Pollution Dispersion Model EURAD-CTM2 with RADM2 gas phase chemical mech-
anism. An operator split approach, with Bott’s advection scheme and QSSA chemical solver is used. The
implementations aspects are discussed in [17]. The 4D-Var method is always able to retrieve the concentra-
tions of observed species. It is concluded that the relative scaling of different species (which amounts to a
preconditioning of the minimization problem) is important and impacts the assimilation skills.

Elbern et al. [18] study the skill and limits of 4D-Var techniques to analyze the emission rates of precur-
sor constituents of ozone, with only ozone observations available. They conclude that NO, emissions could
be successfully analyzed for their strength, while for individual VOC emissions regularization techniques
are needed to account for known ratios of individual species.

Improvements in ozone prediction through the assimilation of observations are considered by Elbern et
al. [15]. Observations of chemical constituents were used from the EMEP database, and national, regional,
and urban surface observations across Europe. Marked improvements after the assimilation of ozone meas-
urements are noticed.

Other techniques available for data assimilation have been successfully applied to atmospheric chemistry
models. For example, van Loon et al. [48] used an ensemble Kalman filter approach to assimilate ground
level ozone measurements and improve uncertainties in the emission rates of NO,, SO,, VOC and CO in
Europe.

3. Mathematical considerations

In this section a review of the mathematical aspects of chemical transport modeling and adjoint sensi-
tivity analysis is presented. Both the continuous and discrete adjoint approaches are described (see also
Wang et al. [50]).

3.1. Atmospheric chemistry and transport modeling

In what follows we denote by u the wind field vector, K the turbulent diffusivity tensor, p the air density
in moles/cm?, and ¢; the mole-fraction concentration of chemical species i (1 < i< s). The density of this
species is p¢; moles/em®. Let V?ep be the deposition velocity of species 7, O, the rate of surface emissions,
and E; the rate of elevated emissions for this species. The rate of chemical transformations f; depends on
absolute concentration values; the rate at which mole-fraction concentrations change is then fi(pc)/p.

Consider a domain Q which covers a region of the atmosphere. Let n be the outward normal vector on
each point of the boundary 0Q. At each time moment the boundary of the domain is partitioned into
0Q = I'"ureYTyro® where r’® is the ground level portion of the boundary; I'™ is the set of (lateral
or top) boundary points where u - n < 0 and I'°YT the set where u-n> 0.
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The evolution of concentrations in time is described by the material balance equations

Oc; 1 |

a_ct = —u-Ve, +;v (pKVe;) +;f,»(pc) +E, L<t<T, (1a)

Ci(tovx) = c?(x), (lb)

ci(t,x) = c™N(t,x) forxeI™, (Lc)
oc; OUT

K—=0 forxe o, (1d)
on

K?: ViPe, —Q, forxe 'R, forall 1 <i<s. (le)

n

We refer to the system (1a)—(1e) as the forward (direct) model. To simplify the presentation, in this paper we
consider as parameters the initial state ¢ of the model; it is known that this does not restrict the generality
of the formulation. The solution of the forward model ¢ = ¢(z,c°) is uniquely determined once the model
parameters ¢” are specified.

The direct model (1a)—(1e) is solved by a sequence of N timesteps of length Az taken between ¢ and ¥ = T.
At each time step one calculates the numerical approximation ¢*(x) & ¢(#*,x) at / = ° + kAt such that

N-1
Ck+l = :/V[tk,tkﬂ] o ck, CN = H e/V‘[tk,thrl] ] CO. (2)
k=0

The numerical solution operator ./ is based on an operator splitting approach, where the transport steps
along each direction and the chemistry steps are taken successively. Operator splitting is standard practice
in computational air pollution modeling [24]. It allows the development of the forward, tangent linear, and
adjoint models with relative ease. Formally, if we denote by 7 the numerical solution operator for direc-
tional transport, and by & the solution operator for chemistry we have

N irag = g‘f(t/zoﬁ'ét/zoﬂ*?/zo%m o,”fgt/z 0,0]@[/2 of)A([/z. (3)

The numerical errors introduced by splitting are an important component of model errors (see e.g., [46]). In
this paper, for the purpose of 4D-Var data assimilation, we assume the model errors to be small. Indeed, in
computational air pollution modeling the splitting errors oscillate with the diurnal cycle and do not grow
unboundedly for evolving time [24].

An infinitesimal perturbation 3¢° in the parameters will result in perturbations d¢A7) of the concentration
fields. These perturbations are solutions of the tangent linear model as discussed in Appendix A. In the di-
rect sensitivity analysis approach one solves the model (1a)—(1e) together with the tangent linear model for-
ward in time [51].

3.2. Continuous adjoint sensitivity analysis

Consider a scalar response functional defined in terms of the model solution ¢(¢)

5@ = [ [ stetenaa @)

The response depends implicitly on the parameters ° via the dependence of ¢(f) on ¢°. The continuous ad-
joint model is defined as the adjoint of the tangent linear model as explained in Appendix A. By imposing
the Lagrange identity and after a careful integration by parts [10,36] one arrives at the following equations
that govern the evolution of the adjoint variables:
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a;li jd T 0
i -V (ukh)-V- pKV; — (F (pc))u),. —¢,, T=t=r1, (5a)
W(T,x) = 25 (x), (5b)
Ai(t,x) =0 forx e I'N, (5¢)

o(4;
A+ pK% =0 forxe YT, (5d)
pK% =y, forxe IR, forall 1 <i<s, (5e)

n
where

0 .

d.(t,x) = M(M), (x) =0, (6)

Oc;

and 1,(¢,x) are the adjoint variables associated with the concentrations ¢,(¢,x), | <i < s. In the above F = 0f/
Oc is the Jacobian of the chemical rate function f. A typical sparsity structure for the Jacobians of atmos-
pheric chemistry is shown in Fig. 1. A detailed discussion of the chemical terms in the context of adjoint
modeling can be found in [9,42]. To obtain the ground boundary condition we use the fact that u-n =0
at ground level. We refer to (5a)—(5e) as the (continuous) adjoint system of the tangent linear model.
The adjoint variables A(z,x) are also called influence functions [1] and represent the sensitivities of the re-
sponse functional to perturbations in the state variables ¢(z,x)

of
i(t,x) = —>—. 7
(t,x) Seen) ()
In the context of optimal control where the minimization of the functional (4) is required, the adjoint var-
iables may be also interpreted as Lagrange multipliers by imposing the forward model equations as strong

constraints (see Appendix A).
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Fig. 1. Left panel: sparsity structure of the SAPRC-99 Jacobian (with fill-in). There are 920 nonzero entries out of 5476, i.e. the
sparsity is about 17%. Right panel: sparsity structure of the SAPRC-99 Hessian (represented as one Hessian matrix per component).
There are 1696 nonzero entries, i.e. the sparsity is about 0.4%.
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The adjoint system (5a)—(5¢) depends on the state of the forward model (i.e. on the concentration fields
¢(t,x)) through the nonlinear chemical term F(pc) and possibly through the forcing term ¢ for nonlinear
functionals. Note that the adjoint initial condition is posed at the final time 7 such that the forward model
must be first solved forward in time, the state c¢(x,f) saved for all ¢, then the adjoint model could be inte-
grated backwards in time from 7 down to °.

In practice a hybrid approach is used. The forward model is solved using a numerical method, and the
numerical approximation of the state is saved periodically. These checkpoints are used in the definition of
the adjoint equations. The continuous adjoint equation (5a)—(5e) is a convection-diffusion-reaction equation
(with linearized chemistry) and can be solved by any numerical method of choice. In particular an operator
splitting approach could be employed using the same numerical methods as for solving the direct model

N-1
/lk = JV‘[t/chl‘tk] o ik+l7 /10 = H aV[tnuk’th/ﬁl] o ;LN. (8)

k=0
For different cost functionals the forcing ¢; and the initial values iiF are chosen such that the adjoint var-
iables are the sensitivities of the cost functional (7). We now discuss some examples relevant in applications.

Example 1. In many practical situations the cost functional is not integral in time, but is evaluated at a set
of discrete time moments { tk}0<k< ~, which usually contain the endpoints L and VN =T.

s =3 / gu(c(f X)) dx. 9)

The forcing factor ¢; in the adjoint will contain delta functions at measurement times A,_x. An equivalent
formulation is to divide the integration interval into subintervals

I = [, 4). (10)
On each subinterval .#* the backward adjoint integration is carried out using

) 8.
gk+1(clv ,C,,) (Zl‘H,x), € — 0. (11)
aCi
In other words, the initial adjoint value in one interval is obtained from the final adjoint value in the next
time interval, plus a jump given by the derivative of the observation function. For the final interval
k=N — 1 we use the convention that 1(r" + ¢,x) = 0.

¢, =0, L[ —ex) =40 +ex)+

Example 2. If the functional is defined using only solution values at selected points {x}, in the domain (for
example at measurement sites)

5@ = [ e eten)a (12)
then
ogi(cly...,cp F
$,(tx)=3" ‘%(Ti)(z,x;mﬂ;, I (x) =0, (13)

J

3.3. Discrete adjoint sensitivity analysis

In this approach the numerical discretization (2) of the (1a)—(le) is considered to be the forward model.
This is a pragmatic view, as only the numerical model is in fact available for analysis. For brevity the state
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of the discretized model will be denoted c*[j], where i is the species index, j is the space discretization index
and k the time discretization index. ¢[;] will refer to the vector of all species at time level k and grid level ;.
The cost functional is defined in terms of the discrete model state

SEDIPIICNE (14)

and one wants the derivatives of this functional with respect to the discrete model parameters ¢’[j]. A per-
turbation 8¢° in the parameters ¢® propagates in time according to the tangent linear discrete equation

1
66‘k+1 = a/VEI}CYtk+]] [e] 8Ck, 66‘N = Hj\; /1/{{/ tkH [e] 66‘ (15)

where ./ is the tangent linear operator associated with the solution operator .#". For an operator splitting
approach (3) 4" is built from the tangent linear transport and chemistry operators

N

[t+Af —

let/Z jlyAt/Z g—/At/Z (g/m 0-/At/2 g—/ym/z ° 9-;?:/2. (16)

To each tangent linear operator corresponds an adjoint operator (denoted here with a star superscript). The
adjoint equation of (16) is

o-xAt)2

g 15At)2
= ’/X

s o 3.)/ ° g./z*m/z (g/xA; g-/ At/2 g-/;m/z > 3-;&/2 (17)

£
[t+Az1) )

such that the resulting (discrete) adjoint model is
K= N g0 i+ ¢f, k=N-1,N=2,...0; 2"[j] =i (x)). (18)

The forcing function ¢ and the initial values A" are chosen such that the adjoint variables are sensitivities of
the functional with respect to the state variables

A =" (19)

Example 3. For the functional (14)
kr - _ ag . Ny _678 NT
=58 @D AT =55 (1). (20)

Example 4. For data assimilation applications, let us assume the availability of observations ¢**° of the
state variables ¢*. The cost functional measures the distance between model output and observations, as
well as the deviation of the solution from the background state.

1 N
f(CO):_(CO_cb)TBfl C _ch EZ kobs kl(ck_cktobs). (21)
In the above the covariance matrix R~ accounts for observation and representativeness errors. ¢® is the
background concentration (the initial guess in the assimilation procedure) and B the covariance matrix
of the estimated background error. The covariance matrices account for error correlations between differ-
ent species as well as different locations. The discrete adjoint model (18) is then completely specified with

0
¢ =R =) fork =1, =Ry (" - M), a,gioc )04 5 (" =), (22)
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The last relation reflects the influence of the background term on the gradient.

3.4. Comments

The direct decoupled method has been extensively used for sensitivity studies in three dimensional (3D)
atmospheric chemistry transport simulations [12,13,25,51,52]. Direct sensitivity analysis via (forward mode)
automatic differentiation has also been employed in the context of photochemical transport models
[5,26,29]. The direct decoupled method works well for a small number of parameters. The adjoint method
is a complementary approach, which works efficiently for a small number of target functions (e.g. a single
functional) and a large number of parameters (e.g. the discrete initial state), as needed in the context of data
assimilation.

In the adjoint sensitivity analysis one distinguishes between the continuous and the discrete adjoint
modeling, see Sirkes and Tziperman [45]. Continuous adjoint sensitivity in practice is solved numerically,
resulting in a discretization of the continuous adjoint equations. On the other hand the discrete adjoints are
computed from the adjoint of the numerical discretization. The operations of discretization and adjoint
usually do not commute, i.e. the discrete and the continuous adjoint approaches lead to different results.

The consistency of discrete adjoints with the continuous adjoint equation is a topic of ongoing research.
Sei and Symes [44] analyzed several simple discretization schemes for the one dimensional nonlinear advec-
tion equation and concluded that consistency of discrete adjoints is not automatic. Sirkes and Tziperman
[45] studied a one-dimensional convection-diffusion equation solved using central differences for both
advection and diffusion and leap-frog time stepping. They showed that the discrete adjoint leads to strong
oscillatory numerical artifacts. For time integration algorithms, Hager [22] gave order conditions for the
discrete adjoints of Runge—Kutta methods to be consistent discretizations of the continuous adjoint equa-
tions. The linear stability region of the discrete adjoint coincides with the stability region of the forward
method. For example, the Crank—Nicholson time discretization used in STEM (Section 4) is a second order
Runge-Kutta scheme; its adjoint is a second order discretization of the continuous adjoint equations.

The discrete adjoints are in principle preferred for (smooth) data assimilation problems since they pro-
vide the exact derivative of the discrete function being minimized. They are also necessary in the compu-
tation of total energy or Hessian singular vectors. A hybrid adjoint model approach (discrete adjoint for
the transport integration, continuous adjoint for the chemistry integration) was successfully applied to
4D-Var chemical data assimilation by Errera and Fonteyn [19]. For sensitivity studies using the adjoint
method one wants to approximate the sensitivities of the continuous model, i.e. in this case a continuous
adjoint approach may be preferable.

4. Numerical aspects of adjoint STEM-III

We now describe the construction of the adjoint of the comprehensive chemical transport model STEM-
II1. The forward model is solved using an operator splitting approach. The resulting discrete adjoint sen-
sitivity model is also split. We discuss in detail the numerical techniques used for the solution of the forward
model and the resulting discrete adjoints. For simplicity we use linear finite difference discretizations of the
transport terms. Typical finite volume discretizations with flux limiting can be applied to the conservative
form of the mass balance equations and result in nonlinear semidiscrete transport equations. The action of
the limiter is discontinuous with respect to the solution. This may lead to considerable theoretical and prac-
tical difficulties in the construction of the discrete adjoints, as well as in the understanding of their proper-
ties (see e.g., Homescu and Navon [23]). While we recognize that the study of discrete adjoints for flux
limited methods is an important area of ongoing research, the current focus on simple linear (with respect
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to the solution) discretizations of the transport terms should be regarded as a first step toward robust data
assimilation systems for air quality.

4.1. Horizontal transport

Horizontal transport is solved using a directional x and y split approach. The basic numerical techniques
solve the one-dimensional transport equation

oc 6016( dc
= p

dc
Ka>a c(tyxin) - Cin(t)7 K—

a— uax+;a =0. (23)

Yout

The horizontal advection term is discretized by the third order upwind finite difference formula [28]

( 6C> { u,-(—ci,z + 6Ci,] — 3Ci — 20,‘+1)/(6Ax), if U; = O, (24)
u= -
ox/ | _, u;(2¢;1 + 3¢; — 6¢i11 + ¢i2) / (6A%), if u; <O.
The diffusion terms are discretized by the second order central differences
l E pK@ _ (Pi1Kiv1 + piKi) (it — i) — (piKi + pi 1 Kior) (6 — ci) _ (25)
p Ox /|, 2p,Ax?

For the inflow boundary the advection discretization drops to the first order upwind scheme, which makes
the order of consistency of the whole scheme quadratic for the interior points of the domain. If #; > 0 then
x1 is an inflow boundary point; let ¢;, be the corresponding boundary concentration (Dirichlet condition).
The discretization reads

dey _ _, a—cin  (pKot piK) (e — ) = BpiKi = poKo)(er — cin)
dr " Ax 2p,Ax2 ‘
For the outflow boundary the advection discretization also drops to the first order upwind scheme. If

uy = 0 then xy is an outflow boundary point; we use the boundary condition of zero diffusive flux across
the outflow boundary. The discretization reads

(26)

dey ey —cv-1 , —(pPyKn + py 1 Kv-1)(en — en-1)

N ) 27

@ T A T 20uAR (27)
The space semi-discretization leads to the linear ordinary differential equation

d

5 = Al)e(t) + B(), (28)

where the matrix A(¢) depends on the wind field, the diffusion tensor, and the air density but it does not
depend on the unknown concentrations (for the discretization schemes under consideration). The vector
B(t) represents the Dirichlet boundary conditions.

The forward system is advanced in time from " to ¢

ol = (1—A2t/1(z”+1)>1 [<I+A2tA(t”)>c" VLIGELIGR]) (29)

n+ 1

= 7" + At using Crank—Nicholson

2

The chosen discretization leads to pentadiagonal matrices and systems which can be solved very efficiently.
Eq. (29) represents the forward discrete model for horizontal transport. The corresponding adjoint sys-
tem is then advanced backwards in time using the discrete adjoint formulation
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o= (1 + %AT(t”)) <1 - %AT(W)) i (30)

Eq. (30) is a consistent time discretization of the continuous adjoint equation. Note that for time dependent
coefficient matrix the continuous adjoint discretized with Crank—Nicholson

At - At
M= (1 - 2AT(t”)) (1 + 2AT(t”+1)> Vans (31)
it is different than the discrete formula (30).
4.2. Vertical transport

The vertical advection term is discretized by the first order upwind finite difference formula

< 60) { *Wi(cf - Cifl)/(zi 721'—1)7 if w; >0,
—(w—= —
0z/)|._,

_Wi(ci+l — C,‘)/(ZI;H — Z,')7 if w; < 0.
The vertical diffusion is discretized by the second order central differences. Note that the vertical grid is not
uniform. The top boundary condition is Dirichlet for inflow and Neumann for outflow (i.e. zero diffusive
flux through the top outflow boundary). This is similar to the horizontal advection case.
The ground level boundary condition considers the flow of material given by surface emission rates Q
and by deposition processes with deposition velocity V. The vertical wind speed at ground level is
wy = 0. The ground boundary condition reads

Oc
7K§

(32)

= Q— Vc7 (33)

z=ground

where K is the vertical eddy diffusivity.
The ground level concentration is discretized in space as

o (Ko +pKi)(e2—cr) Ve, -0

= y 34
! 2[)1(22 —Z])AZI AZI ( )
where Az, is the height of the first layer.
This space semi-discretization leads to the linear ODE
t
(1) = A(t)e(t) + B(t)ey + %el, (35)
1

where the entry A4; ; accounts now also for the deposition velocity; B accounts for the top boundary and Q
accounts for ground emissions. Here ¢; is the jth column of the identity matrix.

Using Crank—Nicholson time stepping for the concentrations and forward Euler timestepping for the
boundaries and the ground emissions the forward discrete model for vertical transport reads

g = (1 — %A(t”“)) R Kl + %A(t”))c” + At <B(t")eN + QA(:> el)} : (36)

Note that in practice the emission intensities and top boundary values are constant over discrete time inter-
vals (e.g. hourly) and the above forward Euler integration within such an interval is equivalent to Crank—
Nicholson. The corresponding discrete adjoint model is also of the form (30).




394
395
396

399
400

401

402
403
404
405
406

410

413
414
415
416
417

YJCPH 671 No. of Pages 31, DTD=5.0.1
ARTICLE IN PRESS
2 November 2004; Disk Used

A. Sandu et al. | Journal of Computational Physics xxx (2004) xxx—xxx 11

From (30) and (36) one can easily obtain the cost functional derivatives with respect to other parameters.
For example the adjoint sensitivities with respect to emission rates can be calculated by the transposed
chain rule relation

n_ S _ aanTaf_ o\ T nl_l AtTn+ 71n1
¢ =t (eow) a (agr) ' mmm (-5 ATem) # (37)

The emission sensitivity x" is obtained at virtually no additional cost, since the vector [I — (At/2)A™] ™' 2 is
already computed during the update of A in (30).

4.3. Chemistry

Atmospheric chemical kinetics result in stiff ODE equations that require special numerical integration
methods which are stable, preserve linear invariants (a.k.a. mass) and are computationally efficient. In
[41], we have shown that Rosenbrock methods are well suited for solving atmospheric chemistry problems.
The forward discrete chemical model in STEM is given by a Rosenbrock discretization of the chemical
equations

i—1
Yizy,,+2ai‘jkj,
=
1 Cij .
(h/ (,1)) +Z Shoi=1,...,s, (38)

yn+l =W +Zm/k/

j=1
n [8,42], we show that the corresponding discrete adjoint reads

1 , > Cji
(h_y —JY n)) Ui = Midpy1 + Z (ajﬁil’j + f“j)a

j=itl
vi=J"(Y)u, i=s,s—1,...,1, (39)
. _/L,,H—i—z (H(y,) X k) u,—}—Zvl

Here J denotes the Jacobian and H (a 3-tensor) is the Hessian of the derivative function f. Y, are the stage
solution vectors computed by the forward method (38). The formulation can be easily extended to nonau-
tonomous systems.

For completeness we give the continuous chemical adjoint model, obtained by solving the adjoint chem-
ical equation with the Rosenbrock method (38)

i in-%—l & Zalj J9 i = (IH‘H O(,'l’l)
1 C; .

S
A = it + > mik;
j=1



420
421
422
423
424
425
426
427
428
429
430
431

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447

448

449
450
451
452
453
454
455
456
457
458
459
460
461
462
463

YJCPH 671 ARTICLE IN PRESS No. of Pages 31, DTD=5.0.1

2 November 2004; Disk Used

12 A. Sandu et al. | Journal of Computational Physics xxx (2004) xxx—xxx

The numerical experiments reported here use the two stage, second order Rosenbrock method Ros-2 [49]
which is defined by the coefficients y = 1 ++v/2/2, m; =3/2, my = 1/2, a; = 1, and ¢, = 2.

Other popular numerical integration methods for stiff systems are Runge-Kutta and backward differen-
tiation formulas (BDF). It can be shown [43] that the discrete adjoints of BDF schemes are in general (for
variable step sizes) inconsistent with the continuous adjoint equation. Runge-Kutta and Rosenbrock meth-
ods on the other hand are well suited for adjoint computations [22,43].

The implementation of numerical integrators for chemistry can be done automatically using the Kinetic
PreProcessor KPP software tools [11]. A related approach was taken in the early application of the 4D-Var
to chemical data assimilation by Fisher and Lary [21]. KPP was recently extended [9,42] to produce a rapid
and efficient implementation of the code for sensitivity analysis of chemical kinetic systems. KPP builds
Fortran77, Fortran90, C, or Matlab simulation code for chemical systems with chemical concentrations
changing in time according to the law of mass action kinetics. KPP generates the following building blocks:

Fun: the time derivative of concentrations;

Jac, Jac_SP: Jacobian of Fun in full or in sparse format;

KppDecomp: sparse LU decomposition for the Jacobian;

KppSolve, KppSolveTR: solve sparse system with the Jacobian matrix and its transpose;
Jac_SP_Vec, JacTR_SP_Vec: sparse Jacobian (transposed or not) times vector;

The stoichiometric matrix STOICM;

Reactant Prod: vector of reaction rates;

JacReactantProd: the Jacobian of the above;

dFun_dRcoeff: derivatives of Fun with respect to reaction coefficients (in sparse format);
dJac_dRcoeff: derivatives of Jac with respect to reaction coefficients times user vector;

. Hess: the Hessian of Fun; this 3-tensor is represented in sparse format;

. Hess_Vec, HessTR_Vec: Hessian (or its transpose) times user vectors; same as the derivative of Jaco-
bian (transposed) vector product times vector.

H
SCOXNANN B W —

—_
N —

In [9,42] we show how these KPP building blocks can be used to implement very efficiently code for di-
rect and adjoint sensitivity analysis of chemical systems.

5. Implementation aspects of adjoint STEM-III

The forward and adjoint models are parallelized and were run on a cluster of Linux workstations. Par-
allelization is based on dimensional splitting as supported by our library PAQMSG [39]. The library sup-
ports data types for structured grids, and implements routines for data decomposition, allocation of local
and global entities, data scattering, gathering, and shuffling. We use the horizontal-vertical data decompo-
sition presented in Fig. 2. With data in the horizontal slice format each processor can compute the horizon-
tal transport; then data is shuffled in vertical column format and each processor can compute radiation,
vertical transport, chemistry and aerosol processes in one column. For the horizontal transport the number
of processor employed is at most the number of layers. Typically, about 90% of the computational effort is
spent in radiation and chemistry computations, which use data in the column partitioned format. There are
many columns which are mapped onto the available processors such that each processor receives about an
equal amount of work. PAQMSG implements a static mapping scheme of columns (tasks) to processors
that ensures a very good load balancing. On a cluster of workstations all input and output is handled
by the master process (see Fig. 3); and all computations are done by the worker nodes.

For the adjoint we use a two-level checkpointing scheme. The level-2 checkpoints store the concentration
fields on the disk at every operator split step (i.e. at every 15 min for the current application). Note that the
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e e @ B B

H-Slices V-Columns

Fig. 2. The horizontal-vertical data decomposition scheme supported by PAQMSG.

1/0 Data

7\

0-®
L0-®
00-®
10-®

Local Chkpt Local Chkpt Local Chkpt Local Chkpt

Fig. 3. The parallel adjoint STEM implements a distributed checkpointing scheme.

linear transport scheme does not require any additional checkpointing storage. The amount of level-2
checkpoint data increases fivefold if a nonlinear transport scheme (e.g. using flux limiting) is used. The lev-
el-1 checkpoints store the concentrations for each process inside the 15 min intervals; level-1 checkpoints
use memory buffers. For example one forward integration of each chemical box model for 15 min split time
interval requires a number of smaller time steps; these intermediate concentrations are stored in a tempo-
rary matrix and used during the backward integration of the adjoint model. Operator splitting and the rel-
ative short split time intervals make it feasible to store the level-1 checkpoints in memory.

The gas phase chemical mechanism is SAPRC-99 [7] which considers the gas-phase atmospheric reac-
tions of volatile organic (VOCs) and nitrogen oxides (NO,) in urban and regional settings. The sparsity
structure of the Jacobian is shown in Fig. 1. The forward time integration is done with the Rosenbrock
numerical integrator Ros-2 [49]; the continuous adjoint model uses Ros-2 on the same sequence of steps
as the forward chemical integration. Both the forward and the adjoint models are implemented using KPP.
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For our East Asia application discussed in the following section the total level-2 checkpoint information
stored is ~162 MBytes of data for each hour of simulation; or ~4 GBytes per 24 h of simulation. The level-
2 checkpoints of the parallel model are distributed as shown in Fig. 3, where each node stores local infor-
mation on the local disk. This takes full advantage of the total storage capabilities of the system. It also
decreases the communication overhead when the parallel computation runs on a cluster of workstations
since the gigabytes of data are not transmitted over the (relatively slow) connection. The distributed check-
pointing strategy is therefore essential for both efficiency and overall storage capacity. Note that for the
static domain decomposition implemented in PAQMSG the local entities (i.e. horizontal slices or sets of
columns of the concentration field) have the same size throughout the computation, which makes the imple-
mentation of the distributed checkpointing scheme very efficient. For a dynamic domain decomposition
strategy, on the other hand, the size of local entities change during the computation and the implementation
of distributed checkpointing becomes complicated.

The parallel performance of adjoint STEM-III is presented in Fig. 4. The East Asia test case is run on a
Beowulf cluster with 20 nodes (Pentium 4, 2 GHz, | GB RAM) and Gigabit ethernet connection; the one
hour forward and backward simulation corresponds to 0—-1 GMT on March 1st, 2001. On 16 workers the
absolute cpu time for a forward run is about 2 min per hour of simulation; and the cpu time for a forward—
backward run is about 5 min per hour of simulation. The speedup curve (Fig. 4) is close to optimal; for 19
workers the speedup is 16, which translates into an efficiency of 85%.

6. Numerical results

The adjoint of the STEM chemical transport model can be used in sensitivity analysis studies and also
for chemical data assimilation. We now present these two important applications of the computational
tools developed. The analyzed problems are in support of the NASA TRAnsport and Chemical Evolution
over the Pacific (Trace-P) field experiment conducted in East Asia. The simulated region covers 7200 x 4800
km in East Asia, and the simulated interval is one month starting at 0 GMT on March 1st, 2001. The mete-
orological fields are given by a dynamic meteorological model (RAMS) [40], and the initial fields and

20

- - - |deal Speedup .
— Relative Speedup .

-
[¢)]

Relative Speedup
o

10 15 20
No. Workers

Fig. 4. Speedups (relative to a single worker process) for one hour of forward-backward integration with parallel adjoint STEM.
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boundary conditions correspond to Trace-P data campaign. The grid has 90 x 60 x 18 points with a hori-
zontal resolution of 80 km x 80 km.

Details of the forward model simulation conditions and comparison with observations are presented in
Carmichael et al. [6]. The time series of calculated O3, NO,, HCHO, and CO concentration are presented in
Fig. 5. Cheju island (longitude ~127° E, latitude ~34° N) is a remote location, but under the influence of
emissions from China, Korea and Japan, depending on the outflow conditions. As shown in Fig. 5, CO and
O3 can reach values of ~450 and ~75 ppb, respectively. The time series show diurnal and synoptic scale
variability that reflects the complex nature of the Asian outflow.

6.1. Adjoint sensitivity analysis

For the sensitivity analysis 10 simulation cases were carried out to cover the whole month of the Trace-P
campaign period. They are listed in Table 1. The simulation interval for each case is three days. The first
case starts at 0:00 GMT on March 1st, 2001, the second starts at 0:00:00 GMT on March 4th, 2001, and so
forth. The response functional g = g(c(¢")) is the ground level ozone concentration at Cheju Island, at the
final time step of each case.

As shown in Section 3, sensitivities of the response functional g = g(¢(¢")) with respect to the state var-
iables (at each time instant) are the adjoint variables A(¢), which can be obtained by integrating the adjoint
model backwards in time. The distributions of the adjoint variables in the three-dimensional computation
domain, which are available at any instant, provide the essential information for the sensitivity analysis.
For instance, isosurfaces of adjoint variables delineate “influence regions™, i.e. areas where perturbations
in some concentrations will produce significant changes in the response functional (e.g. ozone at Cheju Is-
land at the final time).
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Fig. 5. Time series of concentrations at Cheju.
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Table 1

Descriptions of simulation tests in the sensitivity analysis

Case Simulation time period Target function
1 March 1-3, 2001 Cheju O3 at 0 GMT on March 04, 2001
2 March 4-6, 2001 Cheju O3 at 0 GMT on March 07, 2001
3 March 7-9, 2001 Cheju O3 at 0 GMT on March 10, 2001
4 March 10-12, 2001 Cheju O3 at 0 GMT on March 13, 2001
5 March 13-15, 2001 Cheju O3 at 0 GMT on March 16, 2001
6 March 16-18, 2001 Cheju O3 at 0 GMT on March 19, 2001
7 March 19-21, 2001 Cheju O3 at 0 GMT on March 22, 2001
8 March 22-24, 2001 Cheju O3 at 0 GMT on March 25, 2001
9 March 25-27, 2001 Cheju O3 at 0 GMT on March 28, 2001
10 March 28-30, 2001 Cheju O3 at 0 GMT on March 30, 2001

Fig. 6 displays the influence areas of ozone at 24 h before the final time in case 2 (March 4-6) and case 9
(March 25-27), respectively. The influence region for case 9 is toward the South and close to the Cheju Is-
land, while that for case 2 is toward the Northwest. This difference reflects different meteorological condi-
tions, as indicated by the wind fields shown in Fig. 6.

Three-dimensional back trajectories calculated every 3 h during the periods of March 4-6 and March
25-27 for Cheju are shown in Fig. 7. The back trajectories provide important insight into the adjoint var-
iable distributions. As shown in Fig. 6, for the March 4-6 case the flows are from the northwest and strong,
such that air masses 24 h before arriving at Cheju were over the Beijing area at altitude generally below 2
km. In contrast, during March 22-24 Cheju was under the influence of a high pressure system, and 24 h
before arriving at Cheju the flows were weak and from the south/south-west at altitude below ~1 km. These
features are seen in the influence areas for ozone both in terms of location of the upwind areas, and the
proximity to Cheju (e.g., the influence area are much closer to Cheju for case 9 than for case 2).

The influence regions are difficult to predict based solely on meteorological fields, due to the influence of
turbulent diffusion and complicated chemical reactions. Because of the turbulent nature of the atmospheric
boundary layer, the influence region may quickly extend to a very large area, covering most of the compu-
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Fig. 6. Influence function g, at 1.713 km above sea level, 24 h before the final time from (a) March 4-6, and (b) March 25-27. The
target function is O; at Cheju.
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Fig. 7. Back trajectories starting at Cheju calculated every 3 h during the periods of March 4-6 (left) and March 22-26 (right).

tational domain, and even beyond that. The fact that influence regions cannot be simply predicted through
the meteorological fields is indicated by the differences in the influence regions of various chemical compo-
nents, even if they are all driven by the same wind field.

In order to illustrate this fact, and to identify the region where changes of a certain chemical component
will affect the target ozone observation most, adjoint variable magnitude are averaged for the period of
three days for each case

€(x) :% Z i, 1), (41)

Higher values of ¥ form “cones of influence”, i.e. regions where concentration changes affect the target
function most. Figs. 8 and 9 display these “cones of influence” for cases 2 and 9, respectively.

The ““cones of influence’ for case 2 show that the influence of ozone on itself is confined to regions within
a transport time of less than 1.5 days from Cheju, while the major influence areas for HCHO are over the
primary source regions around Beijing and ~2 days removed from Cheju. The influence of NO, on ozone is
far removed from Cheju, with the region of maximum influence location near the domain boundary and
= 3 days upwind of Cheju, at altitudes between 2 and 4 km. The trajectories shown in Fig. 7 help explain
the vertical distribution of the cones of influence. However the fact that the influence of NO, is located far-
thest away reflects the fact that ozone is produced in the atmosphere via photochemical reactions involving
NO,. In the region of maximum O; sensitivity to NO,, ozone production is NO,-limited and increases in
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NO, lead to increases in O3 levels. This process is fast, and the NO, lifetime and transport distance are
short, so that the ozone is enhanced locally and then transported to Cheju. In addition, ozone production
along the path from Beijing to Cheju is NMHC-limited [6] and the increases in NO, result in a decrease in
ozone.

The situation for case 9 is very different, with the “cones of influence’ located around Cheju, and of lim-
ited vertical extent. These features reflect the influence of the high pressure system.

Further insights into the information contained in the adjoint sensitivities are obtained from Figs. 10-13.
They illustrate, for each of the 10 cases analyzed, the ozone sensitivities at Cheju at the end of each simu-
lation period with respect to perturbations in surface layer O;, NO,, HCHO, and CO at any time within the
simulation window. In the figures, the solid lines represent the time series of the adjoint sensitivities for per-
turbation to species concentration at Cheju, while the dots represent sensitivities due to perturbation of sur-
face concentration at every grid within the domain. The locations of the maximum value for each of the 10
cases for each species are shown in Fig. 14.

The time series of adjoint variables provides insight into the relative impact of transport and chemistry.
For example, for a pure tracer under the influence of advection only (no diffusion, real or numerical), the
adjoint time series with respect to itself would be a delta function with value of unity at the end of each 3
day period and zero for all times prior. Under these conditions, the sensitivity of the tracer with respect to
all other species would be zero at all times.

The calculated ozone sensitivity with respect to itself shows the strong influence of transport for most of
the periods studied (e.g., cases 1-7, and 10). Here the ozone values are largest for the times closer to the last
time step. (Note that in order to produce the time series shown, the value of unity at the end of each period
is not plotted, but instead the value for the first time step of the next case is shown.)
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Fig. 10. Time series of /o, the adjoint sensitivities of surface ozone at Cheju with respect to perturbation of surface O3. The solid lines
represents the sensitivity to O3 concentration at Cheju, while the dots represent sensitivities to O3 perturbations at every grid within the
domain.
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Fig. 11. Time series of Ano,, the adjoint sensitivities of surface ozone at Cheju with respect to perturbation of surface NO,. The solid
lines represents the sensitivity to NO, concentration at Cheju, while the dots represent sensitivities to NO, perturbations at every grid
within the domain.

For these cases the ozone time series are qualitatively similar, with adjoint sensitivity increasing after
~48 h, then becoming negative at ~50 h, and then increasing, reaching a maximum positive value during
the period 60-70 h. A positive Ao, implies a increase of surface ozone at Cheju at some time (e.g., hour 60)
will incur an increase in ozone at hour 72. This can happen only through diffusion or if the trajectories recy-
cle around Cheju. A negative sensitivity for O3 with respect to O3 implies that an increase in ozone at some
previous time leads to a decrease in ozone at Cheju at the end of the 3-day simulation. This can only occur
through chemical interactions under conditions when increasing ozone decreases future ozone production
via reduction in NO, andor peroxyl radicals. This phenomena occurs for most periods around sunset of the
3rd day of the simulation. The behavior during the stagnant high pressure cases (cases 8 and 9, hours 504—
648) is different, and show a broad influence over the entire 3 day period. This reflects the recycling of tra-
jectories (as shown in Fig. 7) along with diffusion.

The surface behavior of the surrounding grid cells are qualitatively similar to that for for Cheju (dots vs
line) in terms of time period of influence, and show positive and negative interactions, but with maximum
values occurring at locations other than Cheju (This is discussed in more detail later).

The adjoint sensitivities of surface ozone at Cheju with respect to perturbation of surface NO, are shown
in Fig. 11. Increasing NO, can increase ozone production under NO,-limited chemical conditions, and can
decrease ozone under VOC-limited condition (by decreasing peroxyl radical concentrations). Both behav-
iors are shown. Under strong transport conditions the sensitivities with respect to NO, are generally smaller
than those for ozone. However, under the high pressure condition the sensitivities with respect to NO, are
larger than those for ozone. For case 8, the largest positive sensitivities occurred 2.5 days in advance.

The sensitivities of ozone with respect to HCHO perturbation are much smaller than those for ozone and
NO,, but show similar pattern to those for ozone. HCHO is both a primary and secondary species. The
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Fig. 12. Time series of Zycno, the adjoint sensitivities of surface ozone at Cheju with respect to perturbation of surface HCHO. The
solid lines represents the sensitivity to HCHO concentration at Cheju, while the dots represent sensitivities to HCHO perturbations at
every grid within the domain.
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Fig. 13. Time series of Aco, the adjoint sensitivities of surface ozone at Cheju with respect to perturbation of surface CO. The solid
lines represents the sensitivity to CO concentration at Cheju, while the dots represent sensitivities to CO perturbations at every grid
within the domain.
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Fig. 14. Locations of the maximum sensitivity with respect to different species (color keyed) for all 10 cases (indicated by the case
number, with “A” representing case 10).

sensitivities of ozone with respect to CO are extremely small, representing the weak interaction between CO
and ozone on these time scales. CO influences ozone via altering the OH concentration (TCO leads to
lOH).

The locations of the maximum sensitivities with respect to Oz, NO,, HCHO, and CO for the individual
10 cases are shown in Fig. 14. Here the locations of the maximum (positive) sensitivity value anytime during
the 3-day period for each case are plotted. The locations of the maximum values for cases 1, 2, 4, 5, and 10
fall in the NW sector. Under the strong outflow conditions represented by these cases (cf., the trajectories,
for case 2 shown in Fig. 7), the location for all the maximum values occur at the same location, indicating
that locations are determined by the transport. The locations of the maximum values for cases 7 and 8 fall
in S, SE of Cheju (see Fig. 7 for trajectories). When the trajectories during a period vary greatly the loca-
tions of the maximum values differ by species (e.g., case 9).

The dependence of the “regions/cones of influence’ on meteorological conditions imply that the com-
puted cones are at most as accurate as are the meteorological fields supplied to the simulation. In addition,
their accuracy is impacted by the numerical errors in the solutions of both the forward and the adjoint
models.

6.2. Data assimilation

The preliminary data assimilation tests were conducted in the twin experiments framework. The descrip-
tions are as follows:

e Reference run: The reference model run starts at /° = 0:00 GMT on March 1st, with the reference initial
concentrations of all chemical species.
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e Observations and assimilation window: We consider a 6 h assimilation window. The observations are con-
centrations of selected species Y™ (here O3 and NO,) as computed by the reference run. Observations
are provided on all grid points at the end of the assimilation window ° + 6h.

e Parameters: The control parameters are the initial concentrations of selected species Y (r°) (here O5 or
NO,).

e [nitial guess: The initial values of the control species are increased by 20%. This provides the “back-
ground” values Y;, which are used as initial conditions for the initial guess run.

e Cost functional: Measures the distance between the model predictions Y, and the values Y™ of the
selected observed species, as well as the deviation of control variables from the background state.

SO =5 3 D) - nf o T ) VL 42)

gridpoints gridpoints
The background and measurement covariance matrices are diagonal,
B = diag{b}, R = diag{r}, (43)

with b = 1000 and r = 1, which means we trust the measurements considerably more than the background
state.

e Optimization algorithm: Quasi-Newton limited memory L-BFGS [2]. The optimization proceeds until the
cost functional is reduced to 0.001 of its initial value, or the number of forward-backward model inte-
grations exceeds 15.

To simplify the data assimilation tests, we only choose the initial O3 (or NO,) concentrations as control
variables while the initial concentrations of other species are kept at their reference values. This gives some-
what idealized test conditions. The control variables (initial concentrations of O3, NO,) are perturbed by
20% from their reference values. The observed variables are O3 and/or NO,. We found that assimilating
Oj; observations alone brings little change to initial concentrations of other species, while assimilating some
other species does bring up adjustments of several initial concentrations.

The performance of the data assimilation procedure is measured by the RMS difference between the ref-
erence values of the control variables and their values recovered by data assimilation. The RMS errors
shown in Fig. 15 are defined as

N I
o reference 0\ __ yreference 2
RMS error = (grﬁ%ﬁts Y ) Z (Y (%) — Y ) ( Z 1> . (44)

gridpoints gridpoints

The decrease in the RMS error of control variable values versus the number of model runs during the opti-
mization procedure is shown in Fig. 15.

For O3 control variables the optimization procedure produces a rapid decrease in the RMS error. Most
of the information comes from O; observations; additional NO, observations do not seem to bring notice-
able benefits. This may be due to the lack of scaling in our formulation of the cost functional. These results
imply that ozone initial conditions is recoverable through data assimilation. For comparison we include the
optimization of the cost functional without the background term (corresponding to an infinite background
covariance). As expected the cost function decreases further.

For NO, control variables the decrease in the cost function, and in the RMS error, is not as pronounced
as that for O;. Again most of the information comes form O; measurements, with additional NO, meas-
urements contributing very little to the optimization process. After about 10 model runs the RMS errors
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Fig. 15. Data assimilation results: RMS errors of the control variables at the initial time (normalized by their pre-assimilation values)
decrease during the optimization procedure. Several tests are shown using different control (CTRL) and observed (OBS) variables.

tend to stagnate, even if the cost functional continues to decrease. Perturbing the initial NO, concentration
by 20% results in only a small change in the final (observed) O3 concentration. This may be explained by the
fact that NO, levels are driven mostly by emissions, and less by the initial conditions, which affects the
observability of the initial NO, field through ozone measurements. The results indicate that further algo-
rithmic developments are needed for assimilating NO,. In particular a better scaling of the cost function,
through a rigorous definition of the covariance matrices, is necessary.

It is interesting to note that the assimilated results in the central region are significantly better than the
other regions. The decrease of the RMS error calculated in the central 50 x 20 grid points is plotted in Fig.
16 along with that of the RMS error calculated in the whole domain. This is probably because the concen-

——=&—— All grid points
—.—(>-— A subset of grid points

o
R |

10"°

RMS error (molecules/cm?®)

#

A

5
Number of Model Runs

Fig. 16. Comparison of decrease of RMS errors calculated with all grid points and inner 50 x 20 ones. The small set of grid points are
chosen to be horizontally centered, vertically spanning from grid levels 6-13. OBS: O;, CTRL: Os.
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Fig. 17. Comparison of assimilation result at Cheju and Shanghai. Recovered initial O3 concentrations are plotted at each iteration,
with the reference values also shown. OBS: O3, CTRL: Os.

trations in the central small region predicted at the final time step are more dependent on the initial con-
dition than the boundary conditions, such as the effect of the ground emissions of some species. When pin-
pointing the assimilation result to specific locations, we also found very different features. For instance, Fig.
17 shows the progress of the recoveries of the Oz concentrations at Cheju and Shanghai. When the assim-
ilation test stops after the cost functional has been reduced by more than three orders of magnitude, the O;
prediction at Shanghai matches the exact value very well, which is anticipated. Unfortunately, the simulated
Oj; concentration at Cheju is not as good, with the relative error only reduced from initial 20% to 6% at the
end. This might suggest that the successful assimilation would require dense observation sites close to the
interest area rather than an uniformly distributed network, as our synthetic observation sites indicated.
Work on this subject is obviously needed in the near future.

We conclude with results from the assimilation of a real data set. The O5 observations collected during
the Trace-P campaign by the P3-B flight on March 7, 2001, are shown in Fig. 18 (squares). This data set
is assimilated in the window 0-12 GMT of March 7. The initial ozone concentrations at all gridpoints are
the control variables. The initial model predictions (Fig. 18, solid line) do not reproduce well the obser-
vations. After analysis the model predictions (dashed line) are in excellent agreement with the
observations.

7. Conclusions and future work

In this paper, we discuss the adjoint sensitivity analysis of three dimensional atmospheric transport and
chemistry models. Adjoint modeling proves to be a powerful computational tool for sensitivity studies as
well as for integrating observational data into the model in a four-dimensional variational (4D-Var) data
assimilation procedure.

An overview of the mathematical theory of adjoint modeling applied to convection-diffusion-reaction
models of atmospheric pollutants is given. The continuous and discrete adjoint model approaches are out-
lined, and formulations of the forcing terms for different cost functionals are discussed.
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Fig. 18. Data assimilation results for O3, P3-B observations on March 7, 2001. The initial ozone concentrations at all gridpoints are
the control variables. The assimilation interval is 12 h. One notices the excellent agreement of the model predictions with the
observations for the run after analysis.

As an example of the discrete approach we discuss in detail the construction of the adjoint model of the
comprehensive 3D chemical transport model STEM. Algorithmic details include the construction of ad-
joints for finite difference transport numerical schemes and for Rosenbrock integrators for stiff chemical
kinetics. Implementation aspects including the parallelization, the efficient distributed checkpointing
scheme, and the performance of the parallel adjoint code are also presented.

The use of adjoints for sensitivity analysis and for data assimilation problems is illustrated using numer-
ical simulations of air pollution in East Asia. The analyzed problems are in support of the large Trace-P
experiment conducted in East Asia in March 2001.

For sensitivity studies the target function is the ozone concentration at Cheju Island. Isosurfaces of
adjoint variables delineate “influence regions”, i.e. areas where perturbations in some concentrations will
produce significant changes in this response functional. Results show that the influence regions are most
affected by the meteorological fields, however they are difficult to predict from the meteorological infor-
mation alone due to the influence of turbulent diffusion and complicated chemical reactions. The influ-
ence areas intersecting domain boundaries indicate that uncertainties in boundary values impact the
accuracy of ozone predictions at Cheju Island. The cones of influence, defined by isosurfaces of the time
integral of adjoint sensitivities, are useful to analyze the complex ozone production and transport
processes.

The first set of data assimilation experiments are conducted in the twin experiment framework. We
consider several scenarios, with the control variables being O3 or NO,, and the observed variables being
O3 and/or NO,. The performance of the data assimilation procedure is measured by two indicators, the
cost function value and the RMS error of control variables. The initial O; control variable can be
recovered nicely from measurements through 4D-Var data assimilation. The recovery of the initial
NO, concentrations is more difficult, presumably the fact that NO, levels are driven mostly by
emissions.
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Preliminary results from the assimilation of real data from the Trace-P campaign are presented. The
excellent agreement of model predictions with observations after analysis constitutes another validation
of the computational tools discussed in the paper.

Future work will focus on continuing the development of algorithmic and software infrastructure for
adjoint modeling of comprehensive chemical transport models; and on using this computational infrastruc-
ture to run more complex tests and to assimilate real measurements data. The fundamental goal of this
work is to enable the assimilation of chemical data available from ground, airplane, and satellite measure-
ments into the models.
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Appendix A. The tangent linear model and its adjoint

An infinitesimal perturbation 8¢” in the initial state will induce a variation & # in the response functional
(4). To first order approximation,

T
)
57 = [ ar [ selne) B et enae, (A1)
I Q ¢
where the perturbations dc¢(z,x) in the concentration fields are obtained by solving the tangent linear model
0d¢; 1

a—: = —U- V6C[ + ;V . ([)KVSC,) —|—F,;*(pc)50, to <t S T, (AZa)
Sci(1,x) = (), (A.2b)
Sci(t,x) = 8¢ (t,x) =0 for x € I', (A.2¢)
K% =0 forx e o, (A.2d)

on
K@é‘)ci = VP8¢, for x € IR, (A.2¢)

n

In the above Fis the Jacobian of the function f, and F; . denotes its ith row. We refer to (A.2a)—(A.2e) as the
tangent linear model associated with the forward model (1a)—(le). In a compact notation

% = 2(c(t))de, L <t<T, (A.3)

with the initial condition (A.2b). The domain Z(%) of the linearized convection-diffusion-reaction opera-
tor £ (c) is taken as the subspace [C([¢°,T],C*(Q)) N[C'([°,T],LA(Q))]’ of the Hilbert space [L*((1°,T) x Q)I°
constrained by the boundary conditions (A.2¢)—(A.2e). In the direct sensitivity analysis approach one solves
the model (1a)—(1e) together with the tangent linear model (A.2a)—(A.2e) forward in time (for each param-
eter an additional sensitivity equation must be solved). The equations (A.2a)—(A.2e) are of convection-dif-
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fusion-reaction type (with linearized chemistry) and in practice are solved by the same numerical method as
the forward model (2) and (3); computational savings are possible by reusing the same matrix factorizations
[51].

The adjoint method may be used to provide an explicit dependence of the response functional to vari-
ations in the parameters. The adjoint operator

L (c)A=V - (ul)+V- (pKV%) + F'(pc)
is determined from the Lagrange identity

/ dt/ ZL(c)dc - Adx = / dt/ dc¢ - L (c)Adx, Voc € 9(&L),Vle 9(&). (A4)
The domain Z(%”) of the adjoint operator is the subspace of [C([#°,T],CX(Q) N[C"([#°,T],.L*(Q))]' con-

strained by the boundary conditions (5¢)—(5¢). Next, the inner product of (A.3) with A(z,x) is taken in
[L*(©°,T) x Q)T to obtain

/dt 0% Jdx = /dr/g )¢ - Adx. (A.5)
{0 Q

After integrating by parts and using (A.4) it follows that

/Q Sc(T) - M(T)dx — /Q Se(t) - 4()dx = / " /Q (Zj“+$*(c)x> 5c.

If A(t,x) € 2(&”) is defined as the solution of the adjoint problem

04 . og
5= —F"(e)h— e (c(t,x)), (A.6a)
NT) =0, (A.6b)

then

6;:/5&’-;1(;0 dx
Q

such that A(1°,x) represents the sensitivity to initial conditions.
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