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Adjoint models are increasingly being developed for use in meteorology and oceanography.
Typical applications are data assimilation, model tuning, sensitivity analysis, and determina-
tion of singular vectors. The adjoint model computes the gradient of a cost function with
respect to control variables. Generation of adjoint code may be seen as the special case of
differentiation of algorithms in reverse mode, where the dependent function is a scalar. The
described method for adjoint code generation is based on a few basic principles, which permits
the establishment of simple construction rules for adjoint statements and complete adjoint
subprograms. These rules are presented and illustrated with some examples. Conflicts that
occur due to loops and redefinition of variables are also discussed. Direct coding of the adjoint
of a more sophisticated model is extremely time consuming and subject to errors. Hence,
automatic generation of adjoint code represents a distinct advantage. An implementation of
the method, described in this article, is the tangent linear and adjoint model compiler (TAMC).

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—prepro-
cessors; G.1.4 [Numerical Analysis]: Quadrature and Numerical Differentiation—automatic
differentiation; G.1.6 [Numerical Analysis]: Optimization—gradient methods; I.2.2 [Artifi-
cial Intelligence]: Automatic Programming—program transformation
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1. INTRODUCTION

Adjoint models are tools developed for inverse modeling of physical sys-
tems. Inverse modeling is used in various fields of science such as geophys-
ics and molecular physics. Among the applications of adjoint models in
oceanography and meteorology are data assimilation, model tuning, sensi-
tivity analysis, and determination of singular vectors.
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In meteorology and oceanography, combining a model with data is a
crucial task. Several methods have been developed for data assimilation.
Sequential methods put a model in a state which is, in general, not
consistent with its dynamics. The model is disturbed and needs some time
to reach dynamic consistency. To keep the disturbance as small as possible,
only a correction of the model state “in the direction” of the data takes place
(Figure 1). Several sequential methods differ in the degree of consistency of
the correction with model dynamics, e.g., Nudging, Successive Correction,
Optimal Interpolation, Kalman Filter, Kalman smoother [Ghil 1989]. In
contrast, the adjoint method always guarantees full consistency with the
dynamics. (For linear models, the Kalman smoother [Bennet 1989] is
equivalent to the adjoint method.) Applying the adjoint method, a model
trajectory is brought as close as possible to the data (Figure 2) by varying
control variables. To quantify the misfit of a model prediction, a cost
function is introduced. This cost function is minimized by use of an
iterative algorithm. Starting with a first guess, in each iteration step an
improved vector of control variables is sought. The search direction is
computed from the gradient of the cost function with respect to the control
variables. The adjoint model computes this gradient vector. In data assim-
ilation, the control variables typically determine the initial conditions or
the forcing for the model [Talagrand and Courtier 1987; Courtier and
Talagrand 1987]. The use of an adjoint model in an optimization procedure
is described in Section 2.

In model tuning, data are used to optimize the model equations them-
selves. Optimization is performed analogously to data assimilation, but the
control variables are parameters in the underlying equations (for example,
numerical diffusion or coupling-constants) [Louis 1991; Schröter 1992].

Fig. 1. Schematic representation of sequential methods (except Kalman smoother). The
model state is represented by the value on the y-axis.
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In the context of inverse modeling, it is useful to look at a model of a
physical system as a mapping H of a vector of control variables X onto a
vector of predictions Y. The aim is to infer information about the control
variables X from the model prediction Y. Linearization of the model around
a given point X0 defines the tangent linear model, which is represented by
the Jacobian matrix A(X0) of the mapping H. The tangent linear model
maps variations of the control variables dX onto variations of the model
prediction dY. The adjoint model is represented by the adjoint A*(X0) of
the Jacobian. It maps in the reverse direction and computes the influence
of the control variables on a given anomaly of the model prediction. A more
detailed introduction to adjoint models is given in Section 2.

Sensitivity analysis is another application of adjoint models [Cacucci
1981]. A tangent-linear model can be used to analyze the impact of small
disturbances. For instance, consider a tangent-linear model of the advec-
tion of temperatures by horizontal currents. If the temperature at one point
is changed, this anomaly is transported downstream and broadened by
diffusion (Figure 3).

In contrast, the adjoint model can be used to analyze the origin of any
anomaly. As shown in Figure 4, a difference at one location can be caused
by propagation of an anomaly from upstream. Thereby, due to the effect of
diffusion, the possible origin of the anomaly is located in a broader area.

In order to forecast the time development of a system, it is useful to know
which initial perturbations amplify most rapidly [Webster and Hopkins
1994]. A perturbation dX implies the largest possible perturbation dY, if it
points in the direction associated with the dominant eigenvector of the
operator A* A. The eigenvectors are called singular vectors.

Fig. 2. Schematic representation of variational methods. Several trajectories differing in the
respective value of the cast function are displayed.

Recipes for Adjoint Code Construction • 439

ACM Transactions on Mathematical Software, Vol. 24, No. 4, December 1998.



Applications described above obviously require a numerical code of the
model and its adjoint. The question is “how practical coding of adjoint
models can be done.”

Suppose we want to simulate a dynamical system numerically. The
development of a numerical simulation program is usually done in three
steps. First, the analytical differential equations are formulated. Then a
discretization scheme is chosen, and the discrete difference equations are
constructed. The last step is to implement an algorithm that solves the
discrete equations in a programming language. The construction of the
adjoint model code may be implemented after any of these three steps.

The analytical model equations are transformed into the adjoint equa-
tions by applying the rules for analytical adjoint operators. These equations
subsequently are discretized and solved by use of a numerical algorithm.
Since the product rule is not valid for discrete operators, one has to be
careful in constructing the discrete adjoint operators. This method is
mostly applied to box models having simple boundary conditions [Schröter
1989].

Constructing the adjoint model from the discrete model equations is
usually done by defining a Lagrange Function. The derivatives of the

Fig. 3. Tangent-linear model: advection and diffusion of perturbations.

Fig. 4. Adjoint model: advection and diffusion of influence.
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Euler-Lagrange equations with respect to the model variables yield the
discrete adjoint equations. Applying this method, no adjoint operators have
to be constructed. However, extensive and cumbersome coding is necessary.
The boundary conditions are handled separately in most cases.

Thacker has introduced this method and applied it to simple models
[Thacker 1987; Long and Thacker 1989a; 1989b]. Also the adjoint code of
the GFDL ocean model has been constructed this way [Tziperman and
Thacker 1989; Tziperman et al. 1992].

The present article is concerned with the third method, where the adjoint
code is developed directly from the numerical code of the model. A numer-
ical model is an algorithm that can be viewed as a composition of differen-
tiable functions, each representing a statement in the numerical code. Note
that the order of evaluation of the individual functions is imposed by the
algorithm. Differentiation of the composition can be done by applying the
chain rule. The resulting multiple product can be computed in different
ways.

Operating in forward mode, the intermediate derivatives are computed in
the same order as the model computes the composition. In contrast, the
adjoint model operates in reverse mode, i.e., the intermediate derivatives
are computed in reverse order. A detailed introduction to differentiation of
algorithms is given in Section 3. This method is feasible even for highly
sophisticated models with complicated boundary conditions. In this ap-
proach, a distinct adjoint model code fragment corresponds to each model
code statement. The adjoint code fragments are composed in reverse order,
compared to the model code. For each kind of statement, simple rules can
be formulated for constructing adjoint statements [Talagrand 1991;
Thacker 1991]. This simplifies considerably construction and debugging of
the adjoint code. In Section 4, some basic concepts for adjoint code genera-
tion from the model code are introduced, such as active and passive
variables, locality, modularity, and readability. Following these concepts,
simple rules for the adjoint of most types of statements are derived. The
general rules are illustrated by some Fortran examples. A problem of the
reverse mode is to provide required variables, i.e., variables computed by
the model code and used by the adjoint code. Conflicts occurring due to
redefinition of required variables are described, and solutions are given.
Programs written in modular languages like Fortran consist of procedures
and functions. The generation of the corresponding adjoint structure is
explained. It consists of the argument list, declaration of all variables,
initialization of adjoint variables, and the combination of the adjoint
statements.

The existence of simple rules for the construction of adjoint code suggests
performing this task automatically. Giering [1997] has developed a source
transformation tool (Tangent linear and Adjoint Model Compiler, TAMC)
based on these rules. It accepts Fortran 77 code for the computation of a
function and generates Fortran 77 code for the computation of the deriva-
tive. Another system (Odyssée) has been developed by Rostaing et al.
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[1993]. The forward mode of automatic differentiation is implemented by
ADIFOR [Bischof et al. 1994], another precompiler.

In many simulation programs an implicit or semiimplicit time integra-
tion scheme is applied. To perform one time step, an implicit equation is
solved using an iterative method. Applying the rules described below, the
adjoint code would also be an iteration, which requires variables for each
iteration. In Section 5, an alternative adjoint code for nonlinear implicit
functions is presented. It avoids storing or recomputing required variables
and thus saves memory resources or computation time.

2. ADJOINT MODELS

Consider a dynamical physical system and a model describing this system.
Let D [ Rm (m [ N) be a set of observations, and suppose that the model
can compute the values Y [ Rm corresponding to these observations. How
can the model be manipulated in order to obtain an optimal fit between
observations and corresponding model values?

To quantify the misfit, we introduce a cost function

J: 5
1

2
~Y 2 D, Y 2 D! (1)

by the choice of an appropriate inner product (I, I). This implies that
least-squares-fitting is intended: the smaller J is, the better the model fits
the data.

In order to manipulate the model, we specify a set of n [ N parameters
X, which are called control variables in the following. The dependence of Y
on X within the model is given by a mapping

F:Rn3 Rm

Xx Y.
(2)

Thus, J can be expressed in terms of X by

J: Rn3 R

Xx
1

2
~F~X! 2 D, F~X! 2 D!.

(3)

The problem is to determine the set of control variables X that minimizes
J. Effective minimization algorithms require the gradient ¹X J(X0) of J
with respect to the control variables at a given point X0. To first order we
write the Taylor expansion of J:

J~X! 5 J~X0! 1 ~¹X J~X0!, X 2 X0! 1 o~ uX 2 X0u! (4)

or, in short terms,

dJ 5 ~¹X J~X0!, dX!. (5)
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In the following we will use this shorthand notation whenever linear
approximations are involved. Suppose F is sufficiently regular; then, for
each parameter vector X0, a variation of Y can be approximated to first
order by

dY 5 A~X0! dX, (6)

where A(X0) denotes the Jacobian of F at X0. Due to the symmetry of the
inner product and the product rule, the differentiation of (3) yields

dJ 5
1

2
~ A~X0!dX, F~X0! 2 D! 1

1

2
~F~X0! 2 D, A~X0!dX!

5 ~F~X0! 2 D, A~X0!dX!. (7)

Using the definition of the adjoint operator A*

~v, Aw! 5 ~ A* v, w!, (8)

we obtain

dJ 5 ~ A*~X0!~F~X0! 2 D!, dX!. (9)

Therefore, according to the definition of the gradient (5), the gradient of the
cost function with respect to the control variables is

¹x J~X0! 5 A*~X0!~F~X0! 2 D!. (10)

The linear operator A(X0) represents the tangent-linear model. Its ad-
joint A*(X0), which is linear as well, represents the adjoint model. Both
operators depend on the point X0 at which the model is linearized.
According to (10), the difference F(X0) 2 D can be interpreted as a forcing
of the adjoint model.

The computation of the cost function and its gradient, for a given vector
of control variables, is shown in Figure 5. A detailed analysis of required
basic numerical operations yields that, in general, this computation takes
only 2–5 times the computation of the cost function [Baur and Strassen
1983; Griewank 1989]. Alternatively, the gradient vector ¹X J(X0) could be
approximated by finite differences, which needs at least n 1 1 computa-
tions of the cost function. The use of the adjoint model has two advantages
over finite differences: especially for large n, the adjoint model saves run
time, and the computed gradient is exact.

The application of the adjoint model for optimization is illustrated by an
example in Appendix A. Here, the computation of the cost function and its
gradient, as shown in Figure 5, is performed by a module, which is called
several times by the optimization procedure.
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3. DIFFERENTIATION OF ALGORITHMS

In this section we show how a function H, defined by a numerical algo-
rithm, can be differentiated. Representing each step of the algorithm by a
function, the composition of those functions is differentiated by use of the
chain rule.

Evaluation of the derivative results in a multiple product of matrices
each belonging to a particular step of the algorithm. For differentiation of
scalar-valued functions, in terms of run time, it is favorable to compute this
matrix product in reverse order as compared to the original algorithm. This
approach is called reverse mode. In the second part of this section, the
general rule for performing one step in reverse mode is derived for a
scalar-valued function.

3.1 Application of the Chain Rule

Let

H: Rn3 Rm

Xx Y
(11)

be a function defined by a numerical algorithm. Since an algorithm can be
long and complicated, it might be difficult to find an explicit representation
of H. However, a numerical algorithm can be decomposed into K [ N steps,
each having an explicit representation

Hl : Rnl213 Rnl ~l 5 1, . . ., K!

Zl21x Zl.
(12)

Fig. 5. Illustration of the evaluation of the cost function and its gradient vector.
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In this mathematical representation, the components of the variables Zl

are different from the variables in the numerical code. The numerical
variables can change their values from step to step during one computation
of H(X0). In contrast, the vector Zl holds all nl intermediate results that
are valid after the lth step of the algorithm. In this context, a result can be
regarded as valid as long as it is kept on any memory unit of the computer.
Thus, for p Þ q, components of Zp and Zq may be the values of the same
variable at different steps of the algorithm.

The composition H of differentiable functions Hl

H 5 HK C . . . C H15:
K
J

l51
Hl (13)

can be differentiated according to the chain rule. For a differentiable
function H, the Jacobian is defined by

Aij~X0!: 5
­Hi~X!

­Xj
U

X2X0

~i 5 1, . . . , m; j 5 1, . . . , n!. (14)

Applying the chain rule to (13) yields

A~X0! 5
­HK

­ZK21U ZK215
K21
J

l51
Hl~X0! z . . . z

­H1

­Z0U
Z05X0

. (15)

Since matrix multiplication is associative, at least two strategies for
evaluation of the right-hand side of (15) exist. Operating in forward mode
the multiple product is evaluated in the same order as the composition in
(13), i.e., first ­H2/­Z1 z ­H1/­Z0 is computed; then ­H3/­Z2 is multiplied
by the result, and so on. In contrast, the reverse mode starts with the
evaluation of ­HK/­ZK21 z ­HK21/­ZK22. In the former case all interme-
diate results have n columns, and in the latter case they have m rows.
Thus, for n , m, the forward mode needs fewer numerical computations,
whereas for n . m the situation is the other way around.1 In general, the
intermediate results of the preceding step are required for evaluation of the
Jacobian (see Eq. (15)). This causes an essential difference between the two
methods. While in the forward mode the intermediate results are required
in the same order as computed, in the reverse mode they are required in
reverse order.

By rigorous application of this concept, differentiation of an algorithm
can be performed automatically.

1 The sparsity of Jacobians can be used to reduce the number of computations. In this case, the
total number of computations in forward and reverse mode depends on additional criteria.
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3.2 Differentiation of a Scalar-Valued Function

In the context of optimization, a scalar-valued function has to be differen-
tiated, i.e., n $ m 5 1. Thus, the reverse mode is preferable. For m 5 1,
operating in reverse mode is called adjoint method, and the algorithm for
computing the gradient is called adjoint model. The rest of the article is
concerned with this case.

Let the decomposition of H be

H 5

K
J

l51
Hl, (16)

where

HK : RnK213 R, (17)

and thus nK 5 m 5 1. For an intermediate result

Z0
l :5

l
J

i51
Hi~K0! ~1 # l # K!, (18)

a variation dZl depends on a variation of the control variables dX, and can
be written as

dZl 5

­1 l
J

i51
Hi~X!2

­X
*

X5X0

dX, (19)

where dZ0: 5 dX. The intermediate variation depends on the previous
intermediate variation by

dZl 5
­Hl~Zl21!

­Zl21 U
Zl215Z0

l21

dZl21. (20)

The adjoint of an intermediate result is defined as the gradient of H with
respect to the intermediate result:

d*Zl: 5 ¹Zl

k
J

i5l11
Hi~Zl! uZl5Z0

l (21)

By definition of the gradient (5), we obtain

dH 5 ^d*Zl, dZl&, (22)
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where ^I, I& denotes the Euclidean inner product. Since (22) holds for every
l, we obtain by using (20)

^d*Zl21, dZl21& 5 ^d*Zl, dZl&

5 K d*Zl, S ­Hl~Zl21!

­Zl21 D U
Zl215Z0

l21

dZl21L
5 K S ­Hl~Zl21!

­Zl21 D *U
Zl215Z0

l21

d*Zl, dZl21L .

This holds for all dZl 2 1, so that

d*Zl21 5 S ­Hl~Zl21!

­Zl21 D *U
Zl215Z0

l21

d*Zl. (23)

Equation (23) is the general rule to perform one step in the reverse mode.
According to

d*Z0 5 d*X 5 ¹XH, (24)

the gradient of H with respect to the control variables is evaluated in the
last step.

Since for the Euclidean inner product the adjoint operator is the trans-
posed matrix, (23) can be written as

d*Zi
l21 5 O

j51

nl ­Hj
l~Zl21!

­Zi
l21 U

Zl215Z0
l21

d*Zj
l. (25)

Equation (25) is the basic equation for adjoint code generation.

4. ADJOINT CODE

This section is concerned with the implementation of the general rule (25)
for adjoint code construction. Among the various ways to implement (25), a
scheme of adjoint code construction should guarantee that the adjoint code
is well readable, efficient, easy to debug, and quickly adaptable to changes
in the code that computes the cost function. For this purpose, some basic
concepts are presented (see Courtier and Talagrand [1987]). Following
these concepts, simple rules for the adjoint of most types of statements are
derived. By statements, we denote entire constructs of the programming
language. For each kind of statement, an example illustrates the general
rules for construction of adjoint statements. The code fragments shown in
the examples are written in the Fortran 77 programming language with
some Fortran 90 extensions. Nevertheless, they may be easily translated
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into similar constructs of other languages. Finally, the construction of a
complete adjoint subprogram from the individual adjoint statements will be
discussed.

For convenience, we refer to the code, which computes the cost function,
simply as code. The code representing the adjoint model is denoted by
adjoint code.

4.1 Basic Concepts

4.1.1 Adjoint Variables. The intermediate results Zi
l of Section 3 de-

note the values of variables in the code. In the adjoint code, we compute the
adjoints d*Zi

l of these values. In order to hold those adjoint values, adjoint
variables have to be defined. Since the periods of validity of the values of
one variable do not overlap, and there is a one-to-one mapping between
values and adjoint values, the periods of validity of the adjoint values do
not overlap either. Thus, to hold these adjoint values, it is sufficient to
define one adjoint variable for each variable.

4.1.2 Active and Passive Variables. Variables depending on the control
variables and having an influence on the cost function are called active. An
interprocedural data flow analysis has to be applied to determine the active
variables. Since we deal with differentiation, only variables characterized
by real numbers can be active.

A constant does not depend on an intermediate result except for interme-
diate results which are constants as well. In the former case the Jacobian
corresponding to the definition of the constant has a column consisting of
zeros. Thus, according to (23) the corresponding component of the adjoint
intermediate result is lost. In the latter case, the adjoint intermediate
result is also lost, because it is only used to compute adjoint intermediate
results, which will be lost later.

A diagnostic value does not influence any other intermediate result
except for other diagnostic values. In the former case, the Jacobian corre-
sponding to the step where the diagnostic value disappears has a row
consisting of zeros. Thus, according to (25) the component of the adjoint
intermediate result is zero. In the latter case the adjoint intermediate
result is also zero, because it is a linear combination of adjoints of
diagnostic values, which are zero.

Therefore, for constants and diagnostic values no corresponding adjoint
values have to be computed, and thus, no corresponding adjoint variables
are needed. In context of differentiation of algorithms, they are called
passive variables.

To each statement computing one or more active variables a correspond-
ing adjoint statement must be constructed. All the remaining statements
only change values of passive variables and thus do not need an adjoint
statement.

4.1.3 Locality. The position of an adjoint statement within the adjoint
code is determined by the order of statements in the code, if the adjoint
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code is a strict implementation of the reverse mode. It is consistent and
useful to construct an adjoint subprogram for every subprogram computing
active variables. This concept makes it easier to adapt the adjoint code to
changes in the cost function computing code. The adjoint code, constructed
this way, is safer, and errors will be found much easier, although, in some
cases, unnecessary statements will be constructed following this concept.

4.1.4 Modularity. According to (23), for the computation of the lth
statement of a program, basically all intermediate results Zl 2 1 should be
available. In general, however, the adjoint code of a statement does not
need all results. All variables holding results needed are called required
variables.2 According to our definition of statement, a more complex
statement, such as a loop, can be composed of a number of statements in
turn. Sequences of statements, e.g., all statements forming the kernel of a
loop, are called blocks. Blocks, in turn, can be combined to larger blocks. By
a hierarchy of blocks, the entire code can be divided into fragments. A
scheme of adjoint code construction is modular, if the required variables,
which are computed within the block, are made available by the adjoint
block itself. Modularity thus can be considered as the extension of the
concept of locality to the block level including the availability of required
variables.

Modularity is most naturally realized with a bottom up strategy of
adjoint code construction. Beginning on the lowest level, an adjoint assign-
ment is constructed, and its required variables are determined. On the next
level, the adjoint block is constructed and extra statements are included, in
some cases, to provide required variables to a lower level. After finding the
required variables of this level, which are not computed by the code of the
block, the algorithm continues on the next higher level.

In case a required variable changes its value during code execution,
conflicts in the recomputation of its values can arise, since, in the adjoint
code, the values are required in reverse order (see Sections 4.2.3 and 4.2.4).
Following the concept of modularity, each part of the adjoint code can be
developed and maintained, i.e., adapted to changes in the code, as indepen-
dently as possible from the rest of the adjoint code.

4.1.5 Readability. It is strongly recommended to follow a mnemonical
convention for generating adjoint names. Considering the number of signif-
icant characters of a name, the new adjoint name must be distinguishable
from all other valid names denoting the same structure.

In the examples given below, the adjoint names consist of the original
name preceded by a short string: The generated adjoint name of a variable
called X is ADX. Variables of the code required for the adjoint code
computations have the same name in both codes. Hence, statements
computing required variables can be copied directly from the code into the
adjoint code. In addition, the adjoint code is easy to understand.

2 If the required variable is an array, only some components might be required.
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4.2 Statements

The code of a numerical model consists mainly of only a few elements:

—assignments
—conditional statements
—loops
—sequences of statements (blocks)
—procedure calls
—input/output statements (I/O-statements)

The following sections show the construction of the corresponding adjoint
statements.

4.2.1 Assignment. Only assignments to active variables have corre-
sponding adjoint assignments (concept of active variables; see Section
4.1.2). An assignment can be considered as an operator acting on the vector
of active variables. In general, not all active variables are involved in an
assignment. Hence, for representation of the assignment, it is sufficient to
use a restricted operator acting only on the subset of involved active
variables. The restricted vector of active variables consists of the left-hand
side (LHS) variable and all active variables of the right-hand side (RHS)
expression except variables inside subscript expressions (such as I in A(4pI)).

In order to construct the adjoint statement, we determine the Jacobian of
the operator. This is equivalent to constructing the tangent-linear assign-
ment. The coefficients of the variations form the first row of the Jacobian.
The other rows consist of zeros and ones in the diagonal elements. The
adjoint matrix is the transposed Jacobian. From this matrix the adjoint
assignments are formulated.

For illustration, consider the following assignment performing the lth
step of a numerical algorithm:

Z 5 X p SIN(Ypp2)

Assuming that X, Y, and Z are active variables, the vector of involved active
variables consists of these three variables. The tangent-linear statement of
the assignment is

dZl 5 @SIN~Yl21 pp2#! p dXl21

1 @Xl21 p COS~Yl21 pp2! p 2 p Yl21# p dYl21.

Using the Jacobian, this can be written as a matrix-vector expression:

1 dZ
dY
dX

2
l

5 10 Xl21

0
0

p COS~Yl21pp2!p 2 p Yl21

1
0

SIN~Yl21pp2!

0
1

2 1 dZ
dY
dX

2
l21

,
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where the index l 2 1 (l ) denotes the values of the variables just before
(after) the execution of the assignment. The adjoint operator is the trans-
posed matrix acting on the adjoint variables (see Eq. (23)):

1 d*Z
d*Y
d*X

2
l21

5 1 0
Xl21pCOS~Yl21pp2! p 2 p Yl21

SIN~Yl21pp2!

0
1
0

0
0
1
2 1 d*Z

d*Y
d*X

2
l

Using the notation of Section 4.1.5 this is translated to the assignments

ADY 5 ADY 1 ADZ p XpCOS(Ypp2)p2pY

ADX 5 ADX 1 ADZ p SIN(Ypp2)

ADZ 5 0.0.

The adjoint assignments refer to the variables X and Y. For the execution,
their values just before the execution of the original assignment are
required. The previous value of Z is overwritten by executing the assign-
ment. Consequently, the previous value has no influence on the cost
function. This is reflected by setting the adjoint variable ADZ to zero. An
expression is added to the two other adjoint variables ADX and ADY
denoting the additional influence of X and Y through Z on the cost function
by the assignment to Z.

The assignment to the adjoint variable of the LHS variable must be the
last one, because its previous value is used by all other corresponding
adjoint assignments. The previous value must not be overwritten by one of
the other adjoint assignments. However, such an error could result from
not recognizing that the LHS variable is referenced in the RHS expression,
e.g., in case those variables are components of an array determined by
subscript expressions. Whenever it is not possible to decide whether the
same variable is used, the adjoint code has to be constructed according to a
more general rule. This more general rule can be derived by introducing an
auxiliary variable holding the value of the RHS expression and then
assigning it to the LHS variable. The adjoint of this hypothetical code is
then constructed and simplified.

This strategy is illustrated by the example in Figure 6. The subscript
expressions I and 2pI-1 yield the same component of X for I51. The
hypothetical code and its adjoint are shown in Figure 7. Assuming that the
auxiliary adjoint variable ADH is not used by other statements in the

Fig. 6. Adjoint statements of an assignment. X and Y are active variables.
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adjoint code, we can simplify the adjoint hypothetical code and obtain the
adjoint code on the right-hand side of Figure 6.

If the values of computed indices are known, the auxiliary adjoint
variable can be omitted by simplifying the adjoint code in Figure 6, which
yields the adjoint code in Figure 8. In this case, the same code would have
been constructed according to the less general rule.

Function calls in the RHS expression will be discussed in Section 4.2.6.

4.2.2 Conditional Statement. A conditional statement executes state-
ments according to the boolean value of a condition (Figure 9).

The adjoint code has to execute the adjoints of the statements which have
been executed in the code. Consequently, the values of the conditions must
be known in the adjoint code in order to decide which adjoint statement has
to be executed. The actual boolean value of the condition may be stored
during the model code execution and restored in the adjoint code. Other-
wise the condition must be reevaluated in the adjoint code (right-hand side
of Figure 9). In this case, all referenced variables of the condition become
additional required variables of the adjoint condition statement.

If the condition depends on active variables, the conditional statement
might represent a nondifferentiable function. Where the function is differ-
entiable, the adjoint code is still correct. However, for applications such as
optimization, it can be of limited value. At points, where the function is not
differentiable, the adjoint code is not reliable at all. In some cases, hence, it

Fig. 8. Adjoint statements of an assignment. X and Y are active variables.

Fig. 9. Adjoint conditional statement.

Fig. 7. Adjoint statements of an assignment with auxiliary variable.
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might be favorable to replace the conditional statement by a differentiable
formulation. More details about nondifferentiability are given by Kearfott
[1996] and Xu [1996a; 1996b].

4.2.3 Loops. In Fortran 77, one major application of loop constructs is
assigning values to arrays. For construction of adjoint code, it is important
to know whether the result of one loop pass depends on the results of
another. Such dependence analysis is very similar to the dependence
analysis performed for vectorization or parallelization of loops.

4.2.3.1 Parallel Loops. If there are no dependencies between different
loop passes, the adjoint of the loop is a loop with the same bounds but the
adjoint kernel (Figure 10).

4.2.3.2 Sequential Loops. If the result of a loop pass depends on a
result of a previous pass, the order of the loop passes is important. The
adjoint loop has to compute the adjoint kernel in reverse order. The upper
and the lower bound have to be exchanged, and the negative step size has
to be used (Figure 11). If, in the loop, the upper bound is not reached, then
the lower bound of the adjoint is no longer “up,” but the expression

low 1 step p NINT((up2low)/step20.5),

where the notation of Figure 11 is used.
Since the adjoint kernel references required variables in reverse order of

computation, a conflict occurs whenever the loop kernel overwrites required
variables (see Section 4.1.4). In the example in Figure 12, the variable FAC
holds an intermediate result which is overwritten in every loop pass. On

Fig. 10. Adjoint DO-loop.

Fig. 11. Adjoint DO-loop, with negative step size.

Fig. 12. Example of a conflict. FAC is overwritten. FAC and X are active.
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the other hand, the current values of FAC are required by the adjoint of the
loop kernel.

For this conflict, three solutions are suggested in the following:

(1) The values of FAC can be stored during every execution of the kernel
and read before execution of the adjoint kernel.

(2) The variable FAC can be expanded by one dimension, so that no value is
overwritten during execution of the loop. Thus, for the adjoint of the
loop, the values of FAC can be provided either by a single read
operation or by a single loop for recomputation (see Figure 13). In case
of nested loops, the expansion has to be multidimensional, and the cost
of allocating the necessary multidimensional array might be prohibi-
tive.

(3) The required value of FAC can be recomputed before every pass of the
adjoint kernel. For recomputation an inner loop is inserted (see Figure
14). This is the most expensive solution in terms of run time, but it
needs neither additional memory nor additional I/O.

An important application of sequential loops is the computation of the
limit of a converging sequence. For construction of the adjoint of such loops,
an alternative scheme avoiding conflicts is described in Section 5.

4.2.4 Block of Statements. In order to obtain the adjoint of a block of
statements, the adjoint of each statement must be constructed and ar-
ranged in reverse order (right-hand side in Figure 15).

Fig. 13. Solution of a conflict by introducing an auxiliary array H (O:N).

Fig. 14. Solution of a conflict by recomputation of the value of the required variable FAC.
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The statements of the block can be blocks itself. The adjoint statements
may depend on variables of the original code defined inside the block or
required by the block (arrows between the left- and right-hand side in
Figure 15). Following the concept of modularity, all statements within the
block, which are needed for providing intermediate values, are included in
front of the adjoint statements (left-hand side in Figure 15). A data flow
analysis determines these statements [Kennedy 1981]. This might be done by
computing the sets of input and output variables of each statement and
including statements, which define a required variable. A more sophisticated
data flow analysis would take array indices into consideration which can be
arbitrarily complex [Banerjee 1988]. Without such an analysis, conservative
assumptions about dependencies can lead to unnecessary recomputations.

The set of required variables for the adjoint block consists of variables
directly used by an adjoint statement and those needed for computing
intermediate variables. Thus, the adjoint block is a composition of state-
ments defining intermediate variables followed by the adjoint statements.
The scheme of the adjoint of three statements is

AB C* B* A* (26)

(the dashed line in Figure 15 denotes this order of computations). The
automatic adjoint code generation tool TAMC [Giering 1997] applies this
method.

Fig. 15. Graph of an adjoint block of statements. A, B, and C are statements; A*, B*, and
C* are the corresponding adjoint statements.
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The example in Figure 16 illustrates the method applied to a block of
three statements. Variables located on the left-hand side of an arrow
denote referenced variables, while those located on the right-hand side
denote defined variables. The constructed adjoint block is shown in Figure
17. This block requires the values of the variables X, OM, PI, and RHOW.
They must be provided in order to obey modularity (see Section 4.1.4).

A conflict occurs whenever a variable of the code is referenced by two or
more adjoint statements requiring different values, because the variable is
overwritten inside the block. This is often the case with auxiliary variables,
which are used more than once to hold intermediate results.

The terms on the RHS of the first and third assignment of the code in
Figure 18 depend in a nonlinear way on the active variable X. Thus, the
corresponding adjoint statements both reference X. But different values of
X are required, because the second statement changes the value of X.
Therefore, the block obtained by applying scheme (26) to this example is
not the adjoint block.

In order to solve this conflict, i.e., to ensure that the correct value will be
used by the adjoint statements, as in the case of conflicts caused by loops,
there are different possibilities:

Fig. 16. Examples of an adjoint block of statements (X, Y, and Z are active variables; OM,
FAC, P1, and RHOW are passive variables). The order of execution inside the blocks on the
right-hand side is top-down.
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(1) The required value is stored during the code execution and then can be
used in the adjoint code.

(2) The required value is assigned to an auxiliary variable, and the adjoint
statements use the auxiliary variable.

(3) The required value is recomputed. For a block of statements ABC, in
contrast to the scheme (26), this yields the following scheme of adjoint
block construction:

AB C* A B* A* (27)

Fig. 17. Adjoint code of a block of statements.

Fig. 18. Example of a conflict. X, Y, and Z are active variables. FAC and CONST are passive
variables.
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By this scheme, an additional recomputation ( A) of required variables
is included. The execution of AB C* might change variables used for
computation of A B* and A*. Therefore, to ensure that all required
variables have correct values, some variables possibly have to be reset
before execution of AB*, or A*, or both. Applied to the example in
Figure 18, the variable X has to be reset before the second execution of
the first assignment.

4.2.5 Procedure Call. Procedures computing active variables are called
active, and a corresponding adjoint procedure has to be constructed. The
adjoint statement of a procedure call is the call of the adjoint procedure, in
some cases followed by some additional statements. The adjoint procedure
itself contains the adjoint block of statements (see Section 4.3.1). The
variables required by the adjoint procedure are not known until the adjoint
procedure has been constructed. Since the adjoint procedure call contains
required variables as arguments, the formulation of the call may depend on
details of the adjoint procedure. Thus, the construction of the adjoint
procedure must precede the construction of its call, conforming to the
bottom up strategy explained in Section 4.1.4. When the adjoint procedure
is called, the required variables must be provided (modularity; see Section
4.1.4). Required arguments are passed as arguments as well. Global
variables belonging to COMMON-blocks are taken into account by includ-
ing the COMMON-block in the adjoint procedure. The argument list of the
adjoint procedure consists of the required variables of the original argu-
ment list and the adjoint variables corresponding to the active variables of
the original argument list. Obviously, the number and types of arguments
in the call must correspond to the argument list of the adjoint procedure.

A simple example illustrating the call of an adjoint procedure is shown in
Figure 19. Arguments used inside the procedure have a bar, while under-
lined arguments are computed by the procedure. The latter must be called
by reference (a pointer to the argument is passed); the former, which only
have a bar, may be called by value (the value of the argument is computed
and passed).

In order to satisfy modularity we assume that each adjoint variable in an
argument list will be used and computed inside the adjoint procedure. This
is similar to the adjoint of an assignment (see Section 4.2.1) where we
regard all involved active variables as input and output.

According to the Fortran 77 standard, expressions can also be an argu-
ment of a procedure call. This saves introducing auxiliary variables.
Assume (1) the expression is substituted by an auxiliary variable and (2)
the expression is assigned to this variable just before the call. The call of

Fig. 19. Example of an adjoint procedure call. A is a passive variable; X and Y are active
variables).
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the adjoint procedure is constructed as described in the previous section
using the adjoint of the auxiliary variable. After this call, the adjoint of the
assignment to the auxiliary variable is generated by applying the rules of
Section 4.2.1. If the expression is a required argument of the adjoint
procedure, the auxiliary variable is replaced by the expression it stands for.
Figure 20 shows an example. The hypothetical code avoiding expressions as
arguments is shown in Figure 21. The adjoint auxiliary variable ADP2
represents the indirect influence of the second argument, i.e., the expres-
sion 4pX12pY, on the cost function by means of the procedure.3 The
expression itself depends on the active variables X and Y.

An example of the procedure SUB is given in Section 4.3.1.

4.2.6 Function Call. Functions return a result and are called only
inside an expression. For user-defined functions, an adjoint procedure
should be constructed. Intrinsic functions can be directly differentiated.
The adjoint of call to a user-defined function is the call of the corresponding
adjoint procedure. The argument list is constructed according to the rules
for an adjoint procedure call (see above). This adjoint procedure has one
more argument, namely the adjoint variable corresponding to the function
result. In the example shown in Figure 22, this is the adjoint variable ADZ,
the last argument in the list. If the LHS variable of the assignment is an
argument of the function call, then the variable appears also on the RHS,
and an auxiliary variable must be introduced according to the general rule
for an adjoint assignment. Otherwise, two arguments of the adjoint proce-
dure would be the same variable, which is not allowed according to the
Fortran 77 standard.

In case of an assignment containing a predefined function, the derivative
of the function with respect to the argument is inserted in the RHS of the
adjoint assignment, constructed according to the rule for the adjoint of an
assignment (see Section 4.2.1). Figure 23 shows an example.

An expression, which is the argument of a function call, is handled as
described previously for a procedure call.

The additional influence of an active variable as an argument of a
function is taken into account by an additional term inside the RHS
expression of the assignment to the corresponding adjoint variable. This is
shown in Figure 24. On the left-hand side, an assignment to the variable Z
is shown. The expression on the RHS contains the call of the function FCT.

3 Adjoint auxiliary variables must be initialized as local adjoint variables (see Section 4.3.1).

Fig. 20. Example of an adjoint procedure call having an expression in its argument list. A is
a passive variable; X and Y are active variables.
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The actual arguments of the function are expressions depending on active
variables.

The left-hand side of Figure 25 shows the hypothetical code avoiding
expressions as arguments. The auxiliary variables P1 and P2 have been
introduced to substitute these expressions and FCTH to hold the function
result. The corresponding adjoint code is shown on the right-hand side of
Figure 25. The adjoint subprogram call is constructed by applying the rules
described previously. The adjoint auxiliary variable ADFCTH might be
replaced by the expression ADZpY, since this argument is called by value.
Thus, this auxiliary variable is not needed. The assignments to the adjoint
variable ADX (ADY) can be combined to a single assignment. Replacing the
auxiliary variables P1, P2, and FCTH by the expressions they substitute,
the adjoint code on the right-hand side of Figure 24 is constructed.

4.2.7 Input and Output Statements. In terms of data flow, writing a
value into a file and reading it is equivalent to assigning the value to a

Fig. 21. Substitution of a procedure call without expressions within the argument list. A is a
passive variable; X, Y, and P2 are active variables.

Fig. 22. Example of an adjoint function call (X, Y, and Z are active variables).

Fig. 23. Example of an adjoint predefined function call. X and Y are active variables.

Fig. 24. Example of an adjoint function call having more than one active expression in its
argument list. X, Y, and Z are active variables.
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variable and referencing the variable. The only difference is the internal
organization of how values are stored.

If active variables are written into a file and read from it, this file is
called “active file,” and a corresponding “adjoint file” has to be introduced.
All I/O-statements effecting this file have corresponding adjoint state-
ments. The values in the adjoint file represent the influence of the
corresponding values in the active file on the cost function.

When a variable is read, the adjoint variable has to be set to zero, since
its old value is lost and has no influence on the cost function. The value
which is read affects the cost function by means of the variable. Hence, the
value of the corresponding adjoint variable has to be written into the
adjoint file.

On the other hand, by writing a variable into the active file, the value in
the file depends on the control variables. Thus, the corresponding value in
the adjoint file has to be added to the adjoint variable.

The adjoint statement of an OPEN-statement is a CLOSE-statement and
vice versa. Since the adjoint statements are combined in reverse order, the
same order of I/O-operations will be applied to the adjoint file.

Figure 26 illustrates the construction of adjoint I/O-operations. On the
left-hand side a simple sequence of I/O-operations is given, and in the
middle the hypothetical code is shown.

Whenever a value of an active variable is read more than once, a
modified algorithm of adjoint code construction must be used. The value in
the adjoint file has to be changed as an adjoint variable, due to a reference
of the corresponding active variable. By a READ statement followed by a
WRITE statement concerning the same file position, a value is added to the
value in the file. Hence, the adjoint file has to be a direct access file, as
indicated by the additional REC5 in Figure 27.

Fig. 25. Substitution of a function call without expressions within the argument list (X, Y, Z,
P1, P2, and FCTH are active variables). The lower group of statements on the right-hand side
is the adjoint to the upper group of statements on the left-hand side.
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The first write operation of the adjoint file is not preceded by a read
operation, since the file is empty. Thus, the last read operation of the active
file has to be identified in order to construct the adjoint code. Another
method would be to initialize the adjoint file with zeros in the same manner
as global adjoint variables are initialized (see Section 4.3.1) and always
changing the values in the file. This is not a safe approach, since the length
of the active file is not known a priori. In addition, such an initialization
consumes run time.

In case an expression is written into an active file, additional adjoint code
must be inserted after reading a value of the adjoint file in the same
manner as for expressions in an argument list (see Section 4.2.5).

Fig. 26. Example of adjoint I/O-operations. Note that the adjoint code shown on the
right-hand side is executed top-down. Thus, the first adjoint statement corresponds to the last
code statement.

Fig. 27. Example of adjoint I/O-operations of multiple input statements.
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For general programs it can be impossible to fully analyze the read/write
accesses to all locations of a file. Consequently, without a sophisticated
analysis, adjoint code can only be generated to simple orders of I/O-
statements.

4.3 Subprogram

4.3.1 Procedures (Subroutines). A procedure uses and defines vari-
ables. Except for local variables, they are passed as arguments of the
argument list or as global variables by a COMMON-block. As a first step,
the active variables are determined (for data flow analysis; see Section
4.1.2). The adjoint variables of active variables of the argument list are
included in the argument list of the adjoint procedure.

Once all active variables of the procedure are known, the adjoint code can
be constructed as a block of statements. The required variables of the
adjoint block must be provided by the calling subprogram. All required
arguments of the original argument list should be passed to the adjoint
procedure as arguments as well. Thus, the argument list of the adjoint
procedure contains adjoint variables and required variables. How to handle
required variables of COMMON-blocks is explained below.

Many programming languages offer the possibility to pass names of
subprograms by the argument list. Using Fortran 77, such a name must be
characterized by an EXTERNAL declaration. If this subprogram is active
and called, an adjoint name must be generated, declared as EXTERNAL,
and included in the adjoint argument list.

Fortran 77 permits to pass return addresses as arguments of the argu-
ment list. In this case recognizing the structure of the whole program is
very difficult, and the construction of the adjoint code becomes a very
complicated task. Thus, such construction of code should be avoided.

The declaration part of an adjoint procedure consists of the declaration of
the required and the adjoint variables. An adjoint COMMON-block is
formed for every COMMON-block containing at least one active variable.
The adjoint COMMON-block holds the corresponding adjoint variables. We
assume that all variables in COMMON-blocks are global variables. Thus,
the adjoint COMMON-blocks must be initialized with zeros before the
adjoint code is executed. For this purpose, a special procedure must be
constructed. Usually, memory will be allocated dynamically for local vari-
ables, whenever a procedure is called. Local variables in a SAVE declara-
tion have to be handled differently: the local variable will be static, and its
value is kept until program termination. It is equivalent to a global
variable only used by the specific procedure containing the SAVE declara-
tion. Thus a static active variable can be handled as a global active
variable, and a special adjoint COMMON-block should be constructed
containing all adjoint variables which correspond to the active variables in
the SAVE declaration. This COMMON-block can be initialized in the same
procedure as the other adjoint COMMON-blocks.
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The statement part of the adjoint procedure starts with the initialization
of the local adjoint variables. This is necessary, because usually adjoint
variables will be changed by addition of other values. This part is followed
by the adjoint block of statements.

The construction of an adjoint procedure is illustrated by the example in
Figure 28. Assume that the arguments X and Y are active variables, as well
as the global variable XNORM of the COMMON-block COM1. Thus, the
local variables SUMX, SUMY, and FAC are active, and the adjoint COM-
MON-block ADCOM1 is constructed.

The adjoint code shown in Figure 29 requires, in addition to the argu-
ments X, Y, and A, also the global variable XNORM. Thus, the COMMON-
block COM1 containing XNORM is included in the declaration. The adjoint
argument list contains the required variables X, Y, and A as well as the
adjoint variables ADX and ADY.

After the declaration part, the local adjoint variables ADSUMX, ADSUMY,
and ADFAC are initialized with zero. This is followed by the recomputation
of SUMX, SUMY, and FAC, since their values are required by the adjoint
statements of the block. The last loop kernel defines and uses the variable
J. Since J is also required by the adjoint loop kernel, its definition precedes
this kernel.

The last two assignments and the last assignment to ADFAC are not
necessary, since these adjoint local variables are not used afterward.

Fig. 28. Example of a procedure.
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Nevertheless, they should remain in the adjoint code, keeping the adjoint
code quickly and safely adaptable to changes in the code (see modularity,
Section 4.1.4). Furthermore, code-optimizing compilers would recognize
these redundant statements and ignore them.

Fig. 29. Example of an adjoint procedure. This code was constructed by the TAMC [Giering
1997] and modified to fit onto one page.
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4.3.2 Functions. Functions are handled in the same way as proce-
dures. The argument list is formed by applying the rules described in the
preceding section. An additional argument holds the adjoint variable of the
result of the function. As an example, the function FCT shown in Figure 30
consists only of one assignment. Since the RHS expression depends in a
nonlinear way on the active variables X and Y, these variables must be
passed through the adjoint argument list. The adjoint variables ADX and
ADY as well as the adjoint variable of the result are also part of the list.

4.4 Storing of Required Variables

In case a required value of a variable ought not to be or cannot be
recomputed in the adjoint code, its value must be stored during the code
execution. Therefore, an additional statement must follow the computation
of the required variable in the code. This should be the call of a special
procedure. Just before execution of the adjoint statement requiring this
variable, another procedure, which restores its value, should be called.

The values can either be stored on a temporary file, in dynamic memory,
or in a global variable. The choice depends on the access time and the size
of available memory.

The values are usually required in reverse order of computation. Thus,
the values must be accessible independently. If a file is used, this should be
a direct-access file. The records of values can be accessed by a key
composed of the name of the variable and the subprogram computing it. In
the case the subprogram is called several times, the key must also contain
the actual number of the call. Whenever the variable is stored inside one or
more loops, in addition, all loop index variables must be taken into account.

4.5 Problematic Code Structures

Our recipes to construct the adjoint code directly from the programming
code of the model do not apply for a few specific structures of the code. A
short, probably incomplete list of such structures is given.

Since the order of the execution of statements in the code is important for
the generation of adjoint code, statements, which may define a complicated
order, do not have simple rules for adjoint code generation. This problem
may arise in Fortran 77, when one of the statements ENTRY, RETURN,
and GOTO is used. Fortran 77 permits to pass return addresses as
arguments of the argument list. In this case, recognizing the structure of

Fig. 30. Example of an adjoint function. X, Y, and FCT are active.
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the whole program is very difficult, and construction of the adjoint code
becomes a very complicated task.

Fortran 77 permits static aliasing, i.e., different variables can share the
same memory location. Usually, this is realized by EQUIVALENCE state-
ments. But in some constructs aliasing cannot be detected only by analyz-
ing the EQUIVALENCE statements. The dependency analysis may become
very difficult in such cases.

In most cases we are aware of, such structures are not essential. We
recommend to replace them by other elements of Fortran, which are
consistent with the concept of structured programming.

5. ADJOINT OF CONVERGING SEQUENCES

In many simulation programs, an implicit equation is solved4 which has the
form

x 2 f~ x, p! 5 0, (28)

where p [ Rm is given, x [ Rn is unknown, and f : Rn 3 Rm 3 Rn (see also
Gilbert [1992]). If a pair ( x,p) satisfies (28), f is sufficiently regular, and

1 2
­f

­ x
~ x, p!5: 1 2 A~ x, p! (29)

is invertible, then the implicit function theorem applies. It yields the
existence of a neighborhood U [ Rm of p and of a differentiable function g :
U 3 Rn, so that for p̃ [ U the pair ( x̃ 5 g( p̃), p̃) satisfies (29), and the
derivative of g is

­g

­p
~ p! 5 ~1 2 A~ g~ p!, p!!21 z B~ g~ p!, p!, (30)

where

A~ x, p! :5
­f

­ x
~ x, p! (31)

B~ x, p! :5
­f

­p
~ x, p!. (32)

4 When integrating dynamical systems, implicit equations occur due to an implicit or semiim-
plicit time step.
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Assuming Eq. (28) in the code is solved by an iterative method, then

S1: x0 5 first guess

S2: xn 5 f~ xn21, p! ~n 5 1, . . . , N!

S3: x 5 xN,

where N is the number of steps performed to reach an appropriate
accuracy, and adjoint algorithm is also an iteration consisting of the
corresponding adjoint operators:

S3*: d*xN 5 d*x

d*x 5 0

S2*: d*xn21 5 A*~ xn21, p!d*xn ~n 5 1, . . . , N!

d*p 5 B*~ xn21, p!d*xn

d*xn 5 0

S1*: d*x0 5 0

If the function f is nonlinear, A or B depend on the intermediate result
xn21. In this case, the adjoint iteration requires all intermediate results.
Thus, they must be stored during the iteration and restored during the
adjoint iteration.

Figure 31 shows on the left-hand side a simple example, where the
iteration is implemented as a DO-loop, and X is computed depending on P.
Suppose the nonlinear function FCT is given by a subprogram, and its
adjoint ADFCT has been constructed according to the rules described in
Section (4). Since S2* is the adjoint operation to S2, the adjoint subpro-
gram ADFCT is an implementation of S2*. The corresponding adjoint code
is shown on the right-hand side of Figure 31, where the required interme-
diate results are restored before execution of the adjoint loop kernel.

Depending on the number of iterations, storing might require a huge
amount of memory. Hence, it would be advantageous to construct adjoint
code, which does not require intermediate results. Assuming that in the
code the exact solution x 5 g( p) of (28) has been computed, this is possible.

Fig. 31. Iterative algorithm for solving an implicit equation and the exact adjoint code. P and
X are active variables.
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Equation (30) can be used to compute a variation of x that results from a
variation of p:

dx 5 ~1 2 A~ g~ p!, p!!21 z B~ g~ p!, p!dp (33)

Introducing

dz :5 B dp, (34)

according to (23), for the adjoints, one obtains

d*z 5 @~1 2 A!21#* d*x. (35)

Using basic properties of the adjoint yields an implicit equation for d*z:

d*z 5 A* d*z 1 d*x (36)

Christianson [1993] has shown that this equation can be solved by an
iteration that determines d* z from d* x

d*zN 5 d*x

d*zn21 5 A*~ x, p! d*zn 1 d*x ~n 5 1, . . . , N!

d*zn 5 0

d*z 5 d*z0,

and that the convergence is as fast as for the iteration solving (28).
Using (34), the adjoint variable d*p can be computed from the solution

d*z by

d*p 5 B*~ x, p! d*z. (37)

Since A and thus A* do not depend on the intermediate results xn21, only
the solution x of the iteration and p must be provided for the adjoint
iteration. Computation of (37) after the iteration saves run time compared
to the exact adjoint code. However, for the implementation the aim is to
transform this algorithm into an adjoint algorithm in which the adjoint
operators A* and B* can be replaced by the call of the adjoint procedure
ADFCT.

In a first step, the algorithm can be transformed by splitting the
assignment to d*zn21 into two assignments and including the computation
of B*d*z in the iteration

d*zN 5 d*x

d*zn219 5 A* d*zn ~n 5 1, . . . , N!
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d*p 5 B* d*zn

d*zn 5 0

d*zn21 5 d*zn219 1 d*x

d*z 5 d*z0.

Observing that S2* appears in this iteration operating on d*zn instead of
d*xn, the adjoint procedure ADFCT can be used again for implementation.
In order to keep the argument names for ADFCT the variables ADX and ADZ
are exchanged. The resulting adjoint code is shown in Figure 32.

The adjoint auxiliary variable ADZ is initialized with the value of the
adjoint variable ADX. During the iteration, this variable is added to the
intermediate result ADX. The previous value of ADP is saved in an auxiliary
variable ADPH. After the loop the saved previous value of ADP is added.
Inside the adjoint procedure ADFCT, values are always added to ADP. To
guarantee that only the last iteration determines ADP, it is initialized with
zero before the call of ADFCT. Since the iteration converges, this has the
same effect as computing B*d*z after the iteration.

6. SUMMARY AND CONCLUSIONS

Simple rules for adjoint code generation have been deduced for the most
important elements of numerical programs. The construction of the adjoint
code of a Fortran 77 subprogram formed by these elements has been
described.

It has been shown that alternative adjoint code can be constructed for
iterative procedures solving implicit equations. If the equations are nonlin-
ear, this alternative code needs less memory resources. In summary, these
general directions allow for construction of adjoint code, which is easy to
maintain, efficient, and fast.

For the execution of the adjoint code many intermediate results are
required from the code that computes the cost function. Problems arise

Fig. 32. Iterative algorithm for solving an implicit equation and the adjoint code without
requiring intermediate results. P and X are active variables.
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whenever these results are not accessible. Thus, the code must be analyzed
to detect loss of values. For loops, a data dependence analysis similar to
that for vectorization of loops is required. In order to provide the interme-
diate results, one has to choose between recomputation or recording the
values into memory or file. Large memory or disk resources might be
necessary to record all required variables. On the other hand, recomputa-
tion consumes additional run time. We recommend a mixed strategy, which
combines recomputation and recording into memory and file. The best
combination depends on details of the application and on features of the
computer which executes the adjoint code. Further research is necessary in
this direction.

The described rules are implemented in the tangent linear and adjoint
model compiler (TAMC) [Giering 1997]. Given the top-level routine to be
differentiated and its independent and dependent variables, TAMC deter-
mines all active variables and subroutines by an interprocedural data flow
analysis. The adjoint routines are generated bottom up. Thereby, recompu-
tations are inserted wherever required. Alternatively, directives can be
inserted into the source code. In this case, statements to store (restore) will
be inserted in the automatically generated code (adjoint code).

Using TAMC, several adjoint codes have been constructed. Among them
are some complex models designed to integrate components of the climate
system: Hamburg Large Scale Ocean General Circulation Model (LSG)
[Giering and Maier-Reimer 1997], Hamburg Ocean Primitive Equation
model (HOPE) [Oldenborgh et al. 1997], Tracer Model (TM2) [Kaminski et
al. 1996], and MIT ocean model [Stammer et al. 1997; Marotzke et al.
1998]. Basically, large disk or memory resources are required for storing
the trajectory of nonlinear models. However, resources were reduced con-
siderably by introducing additional checkpoints [Griewank 1992] with the
cost of an additional code run during adjoint code computation. Finally,
those adjoint models need between 2.5 and 4.5 times the execution time of
the respective model. Some Fortran extensions have been implemented in
order to read and generate code for parallel machines. Further extensions,
especially to Fortran 90/95 and High Performance Fortran, are planned.

APPENDIX

A. OPTIMIZATION

In this section, we describe how the adjoint model is effectively used for
minimization of a cost function (see Eq. (4)).

The structure of an optimization program is shown in Figure 33. In this
example, the routine E04DGF of the NAG library [NAG 1987] is used.

The array X holds the values of the control variables, and the integer
variable N denotes its length. The control variables must be initialized by a
first guess before the start of the optimization. In order to reduce run time,
the initialization of the model is separated and performed only once before
the optimization.
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The usage of E04DGF requires a subroutine QGBFUN, which computes
the value of the cost function and its gradient vector. In the example,
QGBFUN calls the subroutine COST to compute the value of the cost
function FC for a given vector of control variables X. The local adjoint
variables ADX and ADFC are initialized. The global adjoint variables are
reset to zero by the subroutine ADZERO. Finally, the adjoint subroutine
ADCOST is called to compute the gradient vector ADX.
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Fig. 33. Example of an optimization program. Arguments used inside the procedure have a
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SCHRÖTER, J. 1992. Variational assimilation of GEOSAT data into an eddy-resolving model
of the gulf-stream extension area. Journal of Physical Oceanography 23, 925–953.

STAMMER, D., WUNSCH, C., GIERING, R., ZHANG, Q., MAROTZKE, J., MARSHALL, J., AND HILL, C.
1997. The Global Ocean Circulation estimated from TOPEX/POSEIDON Altimetry and a
General Circulation Model. Technical Report 49, Center for Global Change Science, Massa-
chusetts Institute of Technology.

TALAGRAND, O. 1991. The use of adjoint equations in numerical modeling of the atmospheric
circulation. In Automatic Differentiation of Algorithms: Theory, Implementation and Appli-
cation, A. Griewank and G. Corliess Eds., pp. 169–180. Philadelphia, Penn: SIAM.

TALAGRAND, O. AND COURTIER, P. 1987. Variational assimilation of meteorological observa-
tions with the adjoint vorticity equation Part I: Theory. Quarterly Journal of the Royal
Meteorological Society 113, 1311–1328.

THACKER, W. 1987. Three lectures on fitting numerical models to observations. Technical
report, GKSS Forschungszentrum Geesthacht GmbH, Geesthacht, Federal Republic of
Germany.

THACKER, W. 1991. Automatic differentiation from an oceanographer’s perspective. In Auto-
matic Differentiation of Algorithms: Theory, Implementation and Application, A. Griewank
and G. Corliess Eds., pp. 191–201. Philadelphia, Penn: SIAM.

TZIPERMAN, E. AND THACKER, W. 1989. An optimal control/adjoint equation approach to
studying the ocean general circulation. Journal of Physical Oceanography 19, 1471–1485.

TZIPERMAN, E., THACKER, W., LONG, R., AND HWANG, S.-M. 1992. Ocean data analysis using a
general circulation model, I, simulations. Journal of Physical Oceanography 22, 1434–1457.

TZIPERMAN, E., THACKER, W., LONG, R., HWANG, S.-M., AND RINTOUL, S. 1992. Ocean data
analysis using a general circulation model, II, North Atlantic model. Journal of Physical
Oceanography 22, 1458–1485.

WEBSTER, S. AND HOPKINS, B. 1994. Adjoints and singular vectors in a barotropic model. In
Workshop on Adjoint Applications in Dynamic Meterology (1994).

XU, Q. 1996a. Generalized adjoint for physical processes with parameterized discontinui-
ties: Part i: Basic issues and heuristic examples. J. Atmospheric Sciences 53, 8, 1123–1142.

XU, Q. 1996b. Generalized adjoint for physical processes with parameterized discontinui-
ties: Part ii: Vector formulations and matching conditions. J. Atmospheric Sciences 53, 8,
1143–1155.

Received September 1996; revised November 1997; accepted July 1998

474 • R. Giering and T. Kaminski

ACM Transactions on Mathematical Software, Vol. 24, No. 4, December 1998.


